Gauss code |
O1O2O3O4O5O6U3U4U6U1U5U2 |
R3 orbit |
{'O1O2O3O4O5O6U3U4U6U1U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5O6U5U2U6U1U3U4 |
Gauss code of K* |
O1O2O3O4O5O6U4U6U1U2U5U3 |
Gauss code of -K* |
O1O2O3O4O5O6U4U2U5U6U1U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 1 -3 -1 3 2],[ 2 0 2 -2 0 3 2],[-1 -2 0 -3 -1 2 2],[ 3 2 3 0 1 3 2],[ 1 0 1 -1 0 2 1],[-3 -3 -2 -3 -2 0 0],[-2 -2 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -2 -3],[-3 0 0 -2 -2 -3 -3],[-2 0 0 -2 -1 -2 -2],[-1 2 2 0 -1 -2 -3],[ 1 2 1 1 0 0 -1],[ 2 3 2 2 0 0 -2],[ 3 3 2 3 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,2,3,0,2,2,3,3,2,1,2,2,1,2,3,0,1,2] |
Phi over symmetry |
[-3,-2,-1,1,2,3,-1,1,1,3,3,1,1,2,2,1,2,2,-1,0,1] |
Phi of -K |
[-3,-2,-1,1,2,3,-1,1,1,3,3,1,1,2,2,1,2,2,-1,0,1] |
Phi of K* |
[-3,-2,-1,1,2,3,1,0,2,2,3,-1,2,2,3,1,1,1,1,1,-1] |
Phi of -K* |
[-3,-2,-1,1,2,3,2,1,3,2,3,0,2,2,3,1,1,2,2,2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z^2+29z+27 |
Enhanced Jones-Krushkal polynomial |
8w^3z^2+29w^2z+27w |
Inner characteristic polynomial |
t^6+58t^4+23t^2+1 |
Outer characteristic polynomial |
t^7+86t^5+59t^3+8t |
Flat arrow polynomial |
4*K1**3 + 4*K1**2*K2 - 4*K1**2 - 4*K1*K2 - 4*K1*K3 - K1 + 2*K2 + K3 + K4 + 2 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 480*K1**4*K2 - 816*K1**4 + 128*K1**3*K2**3*K3 - 384*K1**3*K2**2*K3 + 1280*K1**3*K2*K3 - 480*K1**3*K3 - 320*K1**2*K2**4 + 2080*K1**2*K2**3 - 448*K1**2*K2**2*K3**2 - 8720*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 864*K1**2*K2*K4 + 7656*K1**2*K2 - 688*K1**2*K3**2 - 5708*K1**2 + 2272*K1*K2**3*K3 + 416*K1*K2**2*K3*K4 - 1760*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 + 128*K1*K2**2*K5*K6 - 288*K1*K2**2*K5 + 128*K1*K2*K3**3 - 576*K1*K2*K3*K4 - 128*K1*K2*K3*K6 + 8920*K1*K2*K3 - 160*K1*K2*K4*K5 - 32*K1*K2*K5*K6 + 1368*K1*K3*K4 + 240*K1*K4*K5 + 120*K1*K5*K6 - 32*K2**6 - 32*K2**4*K4**2 + 224*K2**4*K4 - 2720*K2**4 + 96*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 - 2208*K2**2*K3**2 - 496*K2**2*K4**2 + 2520*K2**2*K4 - 272*K2**2*K5**2 - 176*K2**2*K6**2 - 3530*K2**2 + 1576*K2*K3*K5 + 536*K2*K4*K6 + 56*K2*K5*K7 + 48*K2*K6*K8 + 24*K3**2*K6 - 2740*K3**2 - 1016*K4**2 - 404*K5**2 - 190*K6**2 - 4*K7**2 - 2*K8**2 + 4896 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}]] |
If K is slice |
False |