Gauss code |
O1O2O3O4U1U2U4O5O6U3U5U6 |
R3 orbit |
{'O1O2O3O4U1U2U4O5O6U3U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U2O5O6U1U3U4 |
Gauss code of K* |
O1O2O3U4U5O6O4O5U1U2U6U3 |
Gauss code of -K* |
O1O2O3U1U2O4O5O6U4U3U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 0 2 0 2],[ 3 0 1 3 2 1 1],[ 1 -1 0 2 1 1 1],[ 0 -3 -2 0 0 1 2],[-2 -2 -1 0 0 0 0],[ 0 -1 -1 -1 0 0 1],[-2 -1 -1 -2 0 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 -1 -3],[-2 0 0 0 0 -1 -2],[-2 0 0 -1 -2 -1 -1],[ 0 0 1 0 -1 -1 -1],[ 0 0 2 1 0 -2 -3],[ 1 1 1 1 2 0 -1],[ 3 2 1 1 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,1,3,0,0,0,1,2,1,2,1,1,1,1,1,2,3,1] |
Phi over symmetry |
[-3,-1,0,0,2,2,1,0,2,3,4,-1,0,2,2,-1,2,0,2,1,0] |
Phi of -K |
[-3,-1,0,0,2,2,1,0,2,3,4,-1,0,2,2,-1,2,0,2,1,0] |
Phi of K* |
[-2,-2,0,0,1,3,0,0,1,2,4,2,2,2,3,1,-1,0,0,2,1] |
Phi of -K* |
[-3,-1,0,0,2,2,1,1,3,1,2,1,2,1,1,-1,1,0,2,0,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
5z^2+18z+17 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+9w^3z^2-4w^3z+22w^2z+17w |
Inner characteristic polynomial |
t^6+29t^4+40t^2 |
Outer characteristic polynomial |
t^7+47t^5+162t^3+7t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**3 + 8*K1**2*K2 - 2*K1**2 - 6*K1*K2 - 2*K1*K3 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial |
-32*K1**4 + 128*K1**3*K2*K3 - 96*K1**3*K3 + 256*K1**2*K2**5 - 2048*K1**2*K2**4 + 3264*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 - 6528*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 4368*K1**2*K2 - 176*K1**2*K3**2 - 3128*K1**2 + 512*K1*K2**5*K3 - 640*K1*K2**4*K3 - 128*K1*K2**4*K5 + 4288*K1*K2**3*K3 + 256*K1*K2**2*K3*K4 - 2208*K1*K2**2*K3 + 64*K1*K2**2*K4*K5 - 416*K1*K2**2*K5 + 64*K1*K2*K3**3 - 256*K1*K2*K3*K4 + 5504*K1*K2*K3 + 472*K1*K3*K4 + 56*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1632*K2**6 - 640*K2**4*K3**2 - 192*K2**4*K4**2 + 1696*K2**4*K4 - 4056*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 96*K2**3*K6 + 64*K2**2*K3**2*K4 - 1952*K2**2*K3**2 - 32*K2**2*K3*K7 - 536*K2**2*K4**2 + 2712*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 256*K2**2 - 32*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 680*K2*K3*K5 + 88*K2*K4*K6 + 32*K2*K5*K7 - 16*K3**4 + 8*K3**2*K6 - 1424*K3**2 - 404*K4**2 - 104*K5**2 - 8*K6**2 + 2498 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}]] |
If K is slice |
False |