Gauss code |
O1O2O3O4U5U4O6U2U3O5U1U6 |
R3 orbit |
{'O1O2O3O4U5U4O6U2U3O5U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2U3O4O5U1O6O3U6U4U5U2 |
Gauss code of -K* |
O1O2U3O4O5U1O6O3U6U4U5U2 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 1 1 -2 2],[ 1 0 0 2 1 -2 2],[ 1 0 0 1 0 -1 1],[-1 -2 -1 0 0 -2 0],[-1 -1 0 0 0 -1 -1],[ 2 2 1 2 1 0 2],[-2 -2 -1 0 1 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 1 0 -1 -2 -2],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 -1 -2 -2],[ 1 1 0 1 0 0 -1],[ 1 2 1 2 0 0 -2],[ 2 2 1 2 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,-1,0,1,2,2,0,0,1,1,1,2,2,0,1,2] |
Phi over symmetry |
[-2,-1,-1,1,1,2,-1,0,1,2,2,0,0,1,1,1,2,2,0,1,2] |
Phi of -K |
[-2,-1,-1,1,1,2,-1,0,1,2,2,0,0,1,1,1,2,2,0,1,2] |
Phi of K* |
[-2,-1,-1,1,1,2,1,2,1,2,2,0,0,1,1,1,2,2,0,-1,0] |
Phi of -K* |
[-2,-1,-1,1,1,2,1,2,1,2,2,0,0,1,1,1,2,2,0,-1,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
8z+17 |
Enhanced Jones-Krushkal polynomial |
4w^4z-12w^3z+16w^2z+17w |
Inner characteristic polynomial |
t^6+26t^4+21t^2 |
Outer characteristic polynomial |
t^7+38t^5+57t^3 |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-512*K1**4*K2**4 + 1536*K1**4*K2**3 - 1920*K1**4*K2**2 + 1664*K1**4*K2 - 2144*K1**4 + 192*K1**3*K2*K3 + 64*K1**3*K3*K4 + 1280*K1**2*K2**5 - 4224*K1**2*K2**4 + 3072*K1**2*K2**3 - 4640*K1**2*K2**2 + 4384*K1**2*K2 - 224*K1**2*K3**2 - 128*K1**2*K4**2 - 2240*K1**2 + 1600*K1*K2**3*K3 + 2464*K1*K2*K3 + 496*K1*K3*K4 + 96*K1*K4*K5 - 704*K2**6 + 128*K2**4*K4 - 640*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 208*K2**2*K4 - 776*K2**2 + 16*K2*K3*K5 - 648*K3**2 - 248*K4**2 - 24*K5**2 + 2046 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |