Gauss code |
O1O2O3O4U5U2O5U1U4O6U3U6 |
R3 orbit |
{'O1O2O3O4U5U2O5U1U4O6U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2U1O3O4U5O6O5U3U2U6U4 |
Gauss code of -K* |
O1O2U1O3O4U5O6O5U3U2U6U4 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 1 2 -1 1],[ 2 0 1 3 2 1 1],[ 1 -1 0 1 0 1 1],[-1 -3 -1 0 0 -1 1],[-2 -2 0 0 0 -2 0],[ 1 -1 -1 1 2 0 1],[-1 -1 -1 -1 0 -1 0]] |
Primitive based matrix |
[[ 0 2 1 1 -1 -1 -2],[-2 0 0 0 0 -2 -2],[-1 0 0 1 -1 -1 -3],[-1 0 -1 0 -1 -1 -1],[ 1 0 1 1 0 1 -1],[ 1 2 1 1 -1 0 -1],[ 2 2 3 1 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,1,1,2,0,0,0,2,2,-1,1,1,3,1,1,1,-1,1,1] |
Phi over symmetry |
[-2,-1,-1,1,1,2,0,0,0,2,2,-1,1,1,3,1,1,1,-1,1,1] |
Phi of -K |
[-2,-1,-1,1,1,2,0,0,0,2,2,-1,1,1,3,1,1,1,-1,1,1] |
Phi of K* |
[-2,-1,-1,1,1,2,1,1,1,3,2,-1,1,1,2,1,1,0,-1,0,0] |
Phi of -K* |
[-2,-1,-1,1,1,2,1,1,1,3,2,-1,1,1,2,1,1,0,-1,0,0] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
16z+33 |
Enhanced Jones-Krushkal polynomial |
16w^2z+33w |
Inner characteristic polynomial |
t^6+26t^4+69t^2 |
Outer characteristic polynomial |
t^7+38t^5+129t^3 |
Flat arrow polynomial |
-12*K1**2 - 4*K1*K2 + 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial |
-512*K1**6 - 512*K1**4*K2**2 + 1024*K1**4*K2 - 3168*K1**4 + 576*K1**3*K2*K3 - 4320*K1**2*K2**2 + 5184*K1**2*K2 - 896*K1**2*K3**2 - 1240*K1**2 + 4512*K1*K2*K3 + 784*K1*K3*K4 + 16*K1*K4*K5 - 1200*K2**4 - 544*K2**2*K3**2 - 16*K2**2*K4**2 + 1200*K2**2*K4 - 2108*K2**2 + 704*K2*K3*K5 + 32*K2*K4*K6 - 32*K3**4 + 80*K3**2*K6 - 1432*K3**2 - 524*K4**2 - 224*K5**2 - 44*K6**2 + 2658 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {3, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |