Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1115

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,2,0,2,2,1,0,1,1,1,1,2,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1115']
Arrow polynomial of the knot is: -2*K1**2 + K2 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['4.6', '4.8', '6.780', '6.804', '6.914', '6.931', '6.946', '6.960', '6.1002', '6.1016', '6.1019', '6.1051', '6.1058', '6.1078', '6.1102', '6.1115', '6.1217', '6.1294', '6.1306', '6.1317', '6.1321', '6.1324', '6.1336', '6.1377', '6.1416', '6.1420', '6.1427', '6.1429', '6.1434', '6.1436', '6.1437', '6.1439', '6.1441', '6.1444', '6.1450', '6.1451', '6.1458', '6.1459', '6.1477', '6.1482', '6.1490', '6.1503', '6.1504', '6.1511', '6.1521', '6.1547', '6.1560', '6.1561', '6.1562', '6.1597', '6.1598', '6.1600', '6.1601', '6.1608', '6.1620', '6.1622', '6.1624', '6.1634', '6.1635', '6.1637', '6.1638', '6.1713', '6.1725', '6.1758', '6.1846', '6.1933', '6.1944', '6.1949', '6.1950', '6.1951']
Outer characteristic polynomial of the knot is: t^7+32t^5+13t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1115']
2-strand cable arrow polynomial of the knot is: -384*K1**6 + 448*K1**4*K2 - 512*K1**4 - 240*K1**2*K2**2 + 840*K1**2*K2 - 308*K1**2 + 232*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 376*K2**2 - 100*K3**2 - 18*K4**2 + 384
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1115']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11026', 'vk6.11106', 'vk6.11562', 'vk6.11903', 'vk6.12196', 'vk6.12305', 'vk6.13217', 'vk6.19235', 'vk6.19332', 'vk6.19530', 'vk6.19627', 'vk6.22394', 'vk6.22714', 'vk6.22815', 'vk6.26047', 'vk6.26100', 'vk6.26524', 'vk6.28434', 'vk6.30603', 'vk6.30700', 'vk6.31341', 'vk6.31351', 'vk6.31754', 'vk6.31915', 'vk6.32511', 'vk6.32912', 'vk6.34760', 'vk6.38116', 'vk6.40151', 'vk6.40155', 'vk6.42377', 'vk6.44642', 'vk6.44762', 'vk6.46664', 'vk6.52335', 'vk6.52599', 'vk6.52803', 'vk6.56640', 'vk6.64717', 'vk6.66280']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U1O5U4U2O6U5U6
R3 orbit {'O1O2O3O4U3U1O5U4U2O6U5U6', 'O1O2O3U2O4U1O5U3U4O6U5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U6O5U3U1O6U4U2
Gauss code of K* O1O2U3O4O5U6O3O6U2U5U1U4
Gauss code of -K* O1O2U1O3O4U2O5O6U4U6U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 0 -1 1 1 1],[ 2 0 2 0 2 2 0],[ 0 -2 0 -1 1 2 1],[ 1 0 1 0 1 1 0],[-1 -2 -1 -1 0 1 1],[-1 -2 -2 -1 -1 0 1],[-1 0 -1 0 -1 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 1 -1 -1 -2],[-1 -1 0 1 -2 -1 -2],[-1 -1 -1 0 -1 0 0],[ 0 1 2 1 0 -1 -2],[ 1 1 1 0 1 0 0],[ 2 2 2 0 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,2,1,2,1,0,0,1,2,0]
Phi over symmetry [-2,-1,0,1,1,1,0,2,0,2,2,1,0,1,1,1,1,2,-1,-1,1]
Phi of -K [-2,-1,0,1,1,1,1,0,1,1,3,0,1,1,2,-1,0,0,1,-1,-1]
Phi of K* [-1,-1,-1,0,1,2,-1,-1,0,2,3,-1,-1,1,1,0,1,1,0,0,1]
Phi of -K* [-2,-1,0,1,1,1,0,2,0,2,2,1,0,1,1,1,1,2,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+24t^4
Outer characteristic polynomial t^7+32t^5+13t^3
Flat arrow polynomial -2*K1**2 + K2 + 2
2-strand cable arrow polynomial -384*K1**6 + 448*K1**4*K2 - 512*K1**4 - 240*K1**2*K2**2 + 840*K1**2*K2 - 308*K1**2 + 232*K1*K2*K3 + 24*K1*K3*K4 - 8*K2**4 + 16*K2**2*K4 - 376*K2**2 - 100*K3**2 - 18*K4**2 + 384
Genus of based matrix 1
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact