Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1106

Min(phi) over symmetries of the knot is: [-2,-2,0,1,1,2,-1,1,1,1,4,1,0,1,2,0,1,1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1106']
Arrow polynomial of the knot is: -6*K1**2 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.689', '6.691', '6.752', '6.754', '6.1106', '6.1116', '6.1126', '6.1335', '6.1379', '6.1386', '6.1409', '6.1415', '6.1417', '6.1418', '6.1421', '6.1422', '6.1428', '6.1431', '6.1432', '6.1435', '6.1443', '6.1445', '6.1446', '6.1447', '6.1454', '6.1455', '6.1460', '6.1462', '6.1464', '6.1466', '6.1472', '6.1474', '6.1475', '6.1501', '6.1516', '6.1518', '6.1566', '6.1570', '6.1590', '6.1599', '6.1602', '6.1603', '6.1604', '6.1605', '6.1614', '6.1615', '6.1625', '6.1628', '6.1730', '6.1780', '6.1883', '6.1885', '6.1888', '6.1890', '6.1941', '6.1943', '6.1945', '6.1948', '6.1961', '6.1963', '6.1966', '6.1967', '6.1971']
Outer characteristic polynomial of the knot is: t^7+43t^5+51t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1106']
2-strand cable arrow polynomial of the knot is: -1152*K1**4*K2**2 + 2400*K1**4*K2 - 3472*K1**4 - 448*K1**3*K3 + 1568*K1**2*K2**3 - 6368*K1**2*K2**2 - 128*K1**2*K2*K4 + 7848*K1**2*K2 - 368*K1**2*K3**2 - 4048*K1**2 + 4904*K1*K2*K3 + 336*K1*K3*K4 - 568*K2**4 + 128*K2**2*K4 - 2800*K2**2 - 1072*K3**2 - 90*K4**2 + 3328
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1106']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13376', 'vk6.13451', 'vk6.13642', 'vk6.13758', 'vk6.14148', 'vk6.14373', 'vk6.15604', 'vk6.16074', 'vk6.16467', 'vk6.16484', 'vk6.17633', 'vk6.22874', 'vk6.22907', 'vk6.24185', 'vk6.33127', 'vk6.33168', 'vk6.33232', 'vk6.33287', 'vk6.34855', 'vk6.34888', 'vk6.36433', 'vk6.42441', 'vk6.42458', 'vk6.43532', 'vk6.53560', 'vk6.53607', 'vk6.53640', 'vk6.53694', 'vk6.54723', 'vk6.55673', 'vk6.60224', 'vk6.64577']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2U3O5U1U5O6U4U6
R3 orbit {'O1O2O3O4U2U3O5U1U5O6U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1O5U6U4O6U2U3
Gauss code of K* O1O2U3O4O3U5O6O5U4U1U2U6
Gauss code of -K* O1O2U1O3O4U3O5O6U2U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -2 0 2 1 1],[ 2 0 -1 1 4 1 1],[ 2 1 0 1 2 0 1],[ 0 -1 -1 0 1 0 1],[-2 -4 -2 -1 0 0 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 0 -2 -2],[-2 0 1 0 -1 -2 -4],[-1 -1 0 0 -1 -1 -1],[-1 0 0 0 0 0 -1],[ 0 1 1 0 0 -1 -1],[ 2 2 1 0 1 0 1],[ 2 4 1 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,0,2,2,-1,0,1,2,4,0,1,1,1,0,0,1,1,1,-1]
Phi over symmetry [-2,-2,0,1,1,2,-1,1,1,1,4,1,0,1,2,0,1,1,0,0,-1]
Phi of -K [-2,-2,0,1,1,2,-1,1,2,3,2,1,2,2,0,0,1,1,0,2,1]
Phi of K* [-2,-1,-1,0,2,2,1,2,1,0,2,0,1,2,3,0,2,2,1,1,-1]
Phi of -K* [-2,-2,0,1,1,2,-1,1,1,1,4,1,0,1,2,0,1,1,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+29t^4+24t^2
Outer characteristic polynomial t^7+43t^5+51t^3+4t
Flat arrow polynomial -6*K1**2 + 3*K2 + 4
2-strand cable arrow polynomial -1152*K1**4*K2**2 + 2400*K1**4*K2 - 3472*K1**4 - 448*K1**3*K3 + 1568*K1**2*K2**3 - 6368*K1**2*K2**2 - 128*K1**2*K2*K4 + 7848*K1**2*K2 - 368*K1**2*K3**2 - 4048*K1**2 + 4904*K1*K2*K3 + 336*K1*K3*K4 - 568*K2**4 + 128*K2**2*K4 - 2800*K2**2 - 1072*K3**2 - 90*K4**2 + 3328
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {5}, {1, 4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}]]
If K is slice False
Contact