Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,1,1,1,2,3,0,0,1,1,1,1,2,0,0,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1096'] |
Arrow polynomial of the knot is: -4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.586', '6.590', '6.958', '6.987', '6.991', '6.993', '6.999', '6.1054', '6.1065', '6.1096', '6.1168', '6.1182'] |
Outer characteristic polynomial of the knot is: t^7+64t^5+49t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1096'] |
2-strand cable arrow polynomial of the knot is: 224*K1**4*K2 - 912*K1**4 + 128*K1**3*K2*K3 - 1984*K1**3*K3 + 32*K1**2*K2**2*K4 - 976*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 6304*K1**2*K2 - 1104*K1**2*K3**2 - 96*K1**2*K3*K5 - 128*K1**2*K4**2 - 96*K1**2*K4*K6 - 6592*K1**2 + 96*K1*K2**3*K3 - 608*K1*K2**2*K3 - 544*K1*K2*K3*K4 + 6848*K1*K2*K3 + 2320*K1*K3*K4 + 392*K1*K4*K5 + 72*K1*K5*K6 - 112*K2**4 - 336*K2**2*K3**2 - 88*K2**2*K4**2 + 880*K2**2*K4 - 4338*K2**2 + 488*K2*K3*K5 + 144*K2*K4*K6 - 2900*K3**2 - 1020*K4**2 - 180*K5**2 - 62*K6**2 + 4594 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1096'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.81575', 'vk6.81578', 'vk6.81655', 'vk6.81659', 'vk6.81738', 'vk6.81741', 'vk6.81853', 'vk6.81856', 'vk6.82241', 'vk6.82243', 'vk6.82391', 'vk6.82400', 'vk6.82507', 'vk6.82514', 'vk6.82567', 'vk6.82574', 'vk6.83173', 'vk6.83184', 'vk6.83598', 'vk6.83606', 'vk6.84142', 'vk6.84149', 'vk6.84340', 'vk6.84351', 'vk6.84556', 'vk6.84561', 'vk6.86480', 'vk6.86490', 'vk6.88728', 'vk6.88743', 'vk6.88910', 'vk6.88917'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1U5O6U2U4O5U3U6 |
R3 orbit | {'O1O2O3O4U1U5O6U2U4O5U3U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U2O6U1U3O5U6U4 |
Gauss code of K* | O1O2U3O4O5U2O6O3U1U4U6U5 |
Gauss code of -K* | O1O2U3O4O5U1O3O6U4U2U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 1 2 -1 2],[ 3 0 1 3 2 1 3],[ 1 -1 0 1 1 0 2],[-1 -3 -1 0 1 -2 1],[-2 -2 -1 -1 0 -2 0],[ 1 -1 0 2 2 0 2],[-2 -3 -2 -1 0 -2 0]] |
Primitive based matrix | [[ 0 2 2 1 -1 -1 -3],[-2 0 0 -1 -1 -2 -2],[-2 0 0 -1 -2 -2 -3],[-1 1 1 0 -1 -2 -3],[ 1 1 2 1 0 0 -1],[ 1 2 2 2 0 0 -1],[ 3 2 3 3 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,1,1,3,0,1,1,2,2,1,2,2,3,1,2,3,0,1,1] |
Phi over symmetry | [-3,-1,-1,1,2,2,1,1,1,2,3,0,0,1,1,1,1,2,0,0,0] |
Phi of -K | [-3,-1,-1,1,2,2,1,1,1,2,3,0,0,1,1,1,1,2,0,0,0] |
Phi of K* | [-2,-2,-1,1,1,3,0,0,1,1,2,0,1,2,3,0,1,1,0,1,1] |
Phi of -K* | [-3,-1,-1,1,2,2,1,1,3,2,3,0,1,1,2,2,2,2,1,1,0] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 3z^2+22z+33 |
Enhanced Jones-Krushkal polynomial | 3w^3z^2+22w^2z+33w |
Inner characteristic polynomial | t^6+44t^4+23t^2+1 |
Outer characteristic polynomial | t^7+64t^5+49t^3+6t |
Flat arrow polynomial | -4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial | 224*K1**4*K2 - 912*K1**4 + 128*K1**3*K2*K3 - 1984*K1**3*K3 + 32*K1**2*K2**2*K4 - 976*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 544*K1**2*K2*K4 + 6304*K1**2*K2 - 1104*K1**2*K3**2 - 96*K1**2*K3*K5 - 128*K1**2*K4**2 - 96*K1**2*K4*K6 - 6592*K1**2 + 96*K1*K2**3*K3 - 608*K1*K2**2*K3 - 544*K1*K2*K3*K4 + 6848*K1*K2*K3 + 2320*K1*K3*K4 + 392*K1*K4*K5 + 72*K1*K5*K6 - 112*K2**4 - 336*K2**2*K3**2 - 88*K2**2*K4**2 + 880*K2**2*K4 - 4338*K2**2 + 488*K2*K3*K5 + 144*K2*K4*K6 - 2900*K3**2 - 1020*K4**2 - 180*K5**2 - 62*K6**2 + 4594 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {2, 5}, {1, 4}, {3}]] |
If K is slice | False |