Gauss code |
O1O2O3O4U1U4O5U2U5O6U3U6 |
R3 orbit |
{'O1O2O3O4U1U4O5U2U5O6U3U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U2O5U6U3O6U1U4 |
Gauss code of K* |
O1O2U3O4O3U5O6O5U1U4U6U2 |
Gauss code of -K* |
O1O2U1O3O4U3O5O6U5U2U4U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 1 1 1 1],[ 3 0 2 3 1 1 1],[ 1 -2 0 2 0 1 1],[-1 -3 -2 0 0 0 1],[-1 -1 0 0 0 0 0],[-1 -1 -1 0 0 0 0],[-1 -1 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 1 1 1 1 -1 -3],[-1 0 1 0 0 -2 -3],[-1 -1 0 0 0 -1 -1],[-1 0 0 0 0 0 -1],[-1 0 0 0 0 -1 -1],[ 1 2 1 0 1 0 -2],[ 3 3 1 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-1,-1,-1,-1,1,3,-1,0,0,2,3,0,0,1,1,0,0,1,1,1,2] |
Phi over symmetry |
[-3,-1,1,1,1,1,0,1,3,3,3,0,1,1,2,-1,0,0,0,0,0] |
Phi of -K |
[-3,-1,1,1,1,1,0,1,3,3,3,0,1,1,2,-1,0,0,0,0,0] |
Phi of K* |
[-1,-1,-1,-1,1,3,-1,0,0,1,3,0,0,0,1,0,1,3,2,3,0] |
Phi of -K* |
[-3,-1,1,1,1,1,2,1,1,1,3,0,1,1,2,0,0,0,0,-1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-3t |
Normalized Jones-Krushkal polynomial |
z^2+22z+41 |
Enhanced Jones-Krushkal polynomial |
w^3z^2+22w^2z+41w |
Inner characteristic polynomial |
t^6+23t^4+11t^2+1 |
Outer characteristic polynomial |
t^7+37t^5+39t^3+7t |
Flat arrow polynomial |
-8*K1**2 - 6*K1*K2 + 3*K1 + 4*K2 + 3*K3 + 5 |
2-strand cable arrow polynomial |
-640*K1**6 - 256*K1**4*K2**2 + 2112*K1**4*K2 - 4672*K1**4 + 640*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1440*K1**3*K3 + 640*K1**2*K2**3 - 4112*K1**2*K2**2 - 1056*K1**2*K2*K4 + 9096*K1**2*K2 - 928*K1**2*K3**2 - 32*K1**2*K3*K5 - 240*K1**2*K4**2 - 5368*K1**2 - 864*K1*K2**2*K3 - 64*K1*K2**2*K5 - 288*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 7120*K1*K2*K3 + 2552*K1*K3*K4 + 568*K1*K4*K5 + 32*K1*K5*K6 - 352*K2**4 - 144*K2**2*K3**2 - 88*K2**2*K4**2 + 1368*K2**2*K4 - 4994*K2**2 + 576*K2*K3*K5 + 144*K2*K4*K6 + 40*K3**2*K6 - 2880*K3**2 - 1396*K4**2 - 392*K5**2 - 78*K6**2 + 5394 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |