Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,-1,0,1,2,2,0,1,1,1,1,1,1,2,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1079'] |
Arrow polynomial of the knot is: 12*K1**3 - 4*K1**2 - 8*K1*K2 - 5*K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.330', '6.531', '6.1076', '6.1079', '6.1567'] |
Outer characteristic polynomial of the knot is: t^7+31t^5+64t^3+9t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1079'] |
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 448*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 640*K1**2*K2**5 - 1984*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3712*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 7168*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 448*K1**2*K2*K4 + 6536*K1**2*K2 - 160*K1**2*K3**2 - 4484*K1**2 + 1568*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1888*K1*K2**2*K3 - 224*K1*K2**2*K5 - 160*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5272*K1*K2*K3 + 632*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 736*K2**6 + 352*K2**4*K4 - 2592*K2**4 - 656*K2**2*K3**2 - 160*K2**2*K4**2 + 2160*K2**2*K4 - 1814*K2**2 + 296*K2*K3*K5 + 64*K2*K4*K6 - 1252*K3**2 - 484*K4**2 - 24*K5**2 - 10*K6**2 + 3218 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1079'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11458', 'vk6.11759', 'vk6.12775', 'vk6.13113', 'vk6.20670', 'vk6.22110', 'vk6.28169', 'vk6.29594', 'vk6.31214', 'vk6.31561', 'vk6.32388', 'vk6.32793', 'vk6.39613', 'vk6.41854', 'vk6.46225', 'vk6.47832', 'vk6.52220', 'vk6.52503', 'vk6.53059', 'vk6.53375', 'vk6.57603', 'vk6.58765', 'vk6.62259', 'vk6.63205', 'vk6.63785', 'vk6.63901', 'vk6.64216', 'vk6.64397', 'vk6.67059', 'vk6.67927', 'vk6.69678', 'vk6.70361'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U4O6U3O5U1U2U6 |
R3 orbit | {'O1O2O3O4U5U4O6U3O5U1U2U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U3U4O6U2O5U1U6 |
Gauss code of K* | O1O2O3U1U2U4U5O6O5U3O4U6 |
Gauss code of -K* | O1O2O3U4O5U1O6O4U6U5U2U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 0 1 -1 2],[ 2 0 1 1 1 0 2],[ 0 -1 0 1 1 -2 1],[ 0 -1 -1 0 0 -1 0],[-1 -1 -1 0 0 -1 -1],[ 1 0 2 1 1 0 2],[-2 -2 -1 0 1 -2 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 1 0 -1 -2 -2],[-1 -1 0 0 -1 -1 -1],[ 0 0 0 0 -1 -1 -1],[ 0 1 1 1 0 -2 -1],[ 1 2 1 1 2 0 0],[ 2 2 1 1 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,-1,0,1,2,2,0,1,1,1,1,1,1,2,1,0] |
Phi over symmetry | [-2,-1,0,0,1,2,-1,0,1,2,2,0,1,1,1,1,1,1,2,1,0] |
Phi of -K | [-2,-1,0,0,1,2,1,1,1,2,2,-1,0,1,1,-1,0,1,1,2,2] |
Phi of K* | [-2,-1,0,0,1,2,2,1,2,1,2,0,1,1,2,1,-1,1,0,1,1] |
Phi of -K* | [-2,-1,0,0,1,2,0,1,1,1,2,1,2,1,2,-1,0,0,1,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+7w^3z^2-2w^3z+24w^2z+25w |
Inner characteristic polynomial | t^6+21t^4+12t^2+1 |
Outer characteristic polynomial | t^7+31t^5+64t^3+9t |
Flat arrow polynomial | 12*K1**3 - 4*K1**2 - 8*K1*K2 - 5*K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -256*K1**4*K2**2 + 448*K1**4*K2 - 704*K1**4 + 288*K1**3*K2*K3 - 160*K1**3*K3 + 640*K1**2*K2**5 - 1984*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 3712*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 192*K1**2*K2**2*K4 - 7168*K1**2*K2**2 + 64*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 448*K1**2*K2*K4 + 6536*K1**2*K2 - 160*K1**2*K3**2 - 4484*K1**2 + 1568*K1*K2**3*K3 + 192*K1*K2**2*K3*K4 - 1888*K1*K2**2*K3 - 224*K1*K2**2*K5 - 160*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 5272*K1*K2*K3 + 632*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 736*K2**6 + 352*K2**4*K4 - 2592*K2**4 - 656*K2**2*K3**2 - 160*K2**2*K4**2 + 2160*K2**2*K4 - 1814*K2**2 + 296*K2*K3*K5 + 64*K2*K4*K6 - 1252*K3**2 - 484*K4**2 - 24*K5**2 - 10*K6**2 + 3218 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}]] |
If K is slice | False |