Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,1,2,3,1,0,1,1,0,1,1,0,1,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1076'] |
Arrow polynomial of the knot is: 12*K1**3 - 4*K1**2 - 8*K1*K2 - 5*K1 + 2*K2 + K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.330', '6.531', '6.1076', '6.1079', '6.1567'] |
Outer characteristic polynomial of the knot is: t^7+34t^5+63t^3+6t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1076'] |
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6512*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 7608*K1**2*K2 - 80*K1**2*K3**2 - 112*K1**2*K4**2 - 6264*K1**2 + 928*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 384*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 8008*K1*K2*K3 + 752*K1*K3*K4 + 200*K1*K4*K5 - 96*K2**6 + 192*K2**4*K4 - 2320*K2**4 - 32*K2**3*K6 - 528*K2**2*K3**2 - 96*K2**2*K4**2 + 2808*K2**2*K4 - 4422*K2**2 - 32*K2*K3**2*K4 + 344*K2*K3*K5 + 72*K2*K4*K6 + 8*K3**2*K6 - 2284*K3**2 - 844*K4**2 - 100*K5**2 - 18*K6**2 + 4754 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1076'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11075', 'vk6.11153', 'vk6.12237', 'vk6.12344', 'vk6.18331', 'vk6.18670', 'vk6.24765', 'vk6.25224', 'vk6.30650', 'vk6.30743', 'vk6.31878', 'vk6.31947', 'vk6.36947', 'vk6.37411', 'vk6.44138', 'vk6.44461', 'vk6.51874', 'vk6.51921', 'vk6.52739', 'vk6.52850', 'vk6.56109', 'vk6.56330', 'vk6.60624', 'vk6.60957', 'vk6.63532', 'vk6.63576', 'vk6.64010', 'vk6.64054', 'vk6.65751', 'vk6.66017', 'vk6.68759', 'vk6.68969'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U4O6U2O5U1U6U3 |
R3 orbit | {'O1O2O3O4U5U4O6U2O5U1U6U3'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U2U5U4O6U3O5U1U6 |
Gauss code of K* | O1O2O3U1U4U3U5O6O5U2O4U6 |
Gauss code of -K* | O1O2O3U4O5U2O6O4U6U1U5U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 2 1 -1 1],[ 2 0 1 3 1 0 1],[ 1 -1 0 1 0 0 0],[-2 -3 -1 0 1 -2 -1],[-1 -1 0 -1 0 -1 -1],[ 1 0 0 2 1 0 1],[-1 -1 0 1 1 -1 0]] |
Primitive based matrix | [[ 0 2 1 1 -1 -1 -2],[-2 0 1 -1 -1 -2 -3],[-1 -1 0 -1 0 -1 -1],[-1 1 1 0 0 -1 -1],[ 1 1 0 0 0 0 -1],[ 1 2 1 1 0 0 0],[ 2 3 1 1 1 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,-1,1,1,2,-1,1,1,2,3,1,0,1,1,0,1,1,0,1,0] |
Phi over symmetry | [-2,-1,-1,1,1,2,-1,1,1,2,3,1,0,1,1,0,1,1,0,1,0] |
Phi of -K | [-2,-1,-1,1,1,2,0,1,2,2,1,0,2,2,2,1,1,1,-1,0,2] |
Phi of K* | [-2,-1,-1,1,1,2,0,2,1,2,1,1,1,2,2,1,2,2,0,1,0] |
Phi of -K* | [-2,-1,-1,1,1,2,0,1,1,1,3,0,1,1,2,0,0,1,-1,-1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 8z^2+28z+25 |
Enhanced Jones-Krushkal polynomial | 8w^3z^2+28w^2z+25w |
Inner characteristic polynomial | t^6+22t^4+17t^2 |
Outer characteristic polynomial | t^7+34t^5+63t^3+6t |
Flat arrow polynomial | 12*K1**3 - 4*K1**2 - 8*K1*K2 - 5*K1 + 2*K2 + K3 + 3 |
2-strand cable arrow polynomial | -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 192*K1**2*K2**4 + 544*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 6512*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 7608*K1**2*K2 - 80*K1**2*K3**2 - 112*K1**2*K4**2 - 6264*K1**2 + 928*K1*K2**3*K3 - 1536*K1*K2**2*K3 - 384*K1*K2**2*K5 - 160*K1*K2*K3*K4 + 8008*K1*K2*K3 + 752*K1*K3*K4 + 200*K1*K4*K5 - 96*K2**6 + 192*K2**4*K4 - 2320*K2**4 - 32*K2**3*K6 - 528*K2**2*K3**2 - 96*K2**2*K4**2 + 2808*K2**2*K4 - 4422*K2**2 - 32*K2*K3**2*K4 + 344*K2*K3*K5 + 72*K2*K4*K6 + 8*K3**2*K6 - 2284*K3**2 - 844*K4**2 - 100*K5**2 - 18*K6**2 + 4754 |
Genus of based matrix | 0 |
Fillings of based matrix | [[{2, 6}, {4, 5}, {1, 3}]] |
If K is slice | True |