Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1071

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,1,2,2,2,1,1,1,0,0,1,1,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.1071']
Arrow polynomial of the knot is: -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.65', '6.137', '6.201', '6.203', '6.214', '6.310', '6.314', '6.332', '6.385', '6.386', '6.401', '6.516', '6.564', '6.571', '6.572', '6.578', '6.621', '6.626', '6.716', '6.773', '6.807', '6.814', '6.821', '6.940', '6.966', '6.1036', '6.1071', '6.1108', '6.1111', '6.1131', '6.1188', '6.1203', '6.1206', '6.1220', '6.1340', '6.1387', '6.1548', '6.1663', '6.1680', '6.1693', '6.1831', '6.1932']
Outer characteristic polynomial of the knot is: t^7+32t^5+57t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1071']
2-strand cable arrow polynomial of the knot is: -816*K1**4 + 800*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**3*K3 - 2496*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 6048*K1**2*K2 - 1360*K1**2*K3**2 - 48*K1**2*K4**2 - 5584*K1**2 + 192*K1*K2**3*K3 - 832*K1*K2**2*K3 - 128*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 6672*K1*K2*K3 + 1632*K1*K3*K4 + 88*K1*K4*K5 - 208*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 856*K2**2*K4 - 4028*K2**2 + 304*K2*K3*K5 + 32*K2*K4*K6 - 2300*K3**2 - 560*K4**2 - 28*K5**2 - 4*K6**2 + 3958
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1071']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11019', 'vk6.11098', 'vk6.12187', 'vk6.12294', 'vk6.18197', 'vk6.18534', 'vk6.24653', 'vk6.25081', 'vk6.30586', 'vk6.30681', 'vk6.31854', 'vk6.31901', 'vk6.36785', 'vk6.37237', 'vk6.44026', 'vk6.44368', 'vk6.51830', 'vk6.51897', 'vk6.52700', 'vk6.52794', 'vk6.55992', 'vk6.56266', 'vk6.60524', 'vk6.60868', 'vk6.63507', 'vk6.63552', 'vk6.63987', 'vk6.64032', 'vk6.65651', 'vk6.65932', 'vk6.68696', 'vk6.68907']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U4O6U1O5U2U6U3
R3 orbit {'O1O2O3O4U5U4O6U1O5U2U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U3O6U4O5U1U6
Gauss code of K* O1O2O3U4U1U3U5O6O5U2O4U6
Gauss code of -K* O1O2O3U4O5U2O6O4U6U1U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 2 1 -1 1],[ 2 0 0 2 0 1 1],[ 1 0 0 2 1 0 0],[-2 -2 -2 0 1 -2 -1],[-1 0 -1 -1 0 -1 -1],[ 1 -1 0 2 1 0 1],[-1 -1 0 1 1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 1 -1 -2 -2 -2],[-1 -1 0 -1 -1 -1 0],[-1 1 1 0 0 -1 -1],[ 1 2 1 0 0 0 0],[ 1 2 1 1 0 0 -1],[ 2 2 0 1 0 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,-1,1,2,2,2,1,1,1,0,0,1,1,0,0,1]
Phi over symmetry [-2,-1,-1,1,1,2,-1,1,2,2,2,1,1,1,0,0,1,1,0,0,1]
Phi of -K [-2,-1,-1,1,1,2,0,1,2,3,2,0,1,1,1,2,1,1,-1,0,2]
Phi of K* [-2,-1,-1,1,1,2,0,2,1,1,2,1,1,2,2,1,1,3,0,0,1]
Phi of -K* [-2,-1,-1,1,1,2,0,1,0,1,2,0,1,0,2,1,1,2,-1,-1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+24z+29
Enhanced Jones-Krushkal polynomial 5w^3z^2+24w^2z+29w
Inner characteristic polynomial t^6+20t^4+23t^2+1
Outer characteristic polynomial t^7+32t^5+57t^3+6t
Flat arrow polynomial -4*K1**2 - 4*K1*K2 + 2*K1 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -816*K1**4 + 800*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**3*K3 - 2496*K1**2*K2**2 + 256*K1**2*K2*K3**2 - 672*K1**2*K2*K4 + 6048*K1**2*K2 - 1360*K1**2*K3**2 - 48*K1**2*K4**2 - 5584*K1**2 + 192*K1*K2**3*K3 - 832*K1*K2**2*K3 - 128*K1*K2**2*K5 - 384*K1*K2*K3*K4 + 6672*K1*K2*K3 + 1632*K1*K3*K4 + 88*K1*K4*K5 - 208*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 856*K2**2*K4 - 4028*K2**2 + 304*K2*K3*K5 + 32*K2*K4*K6 - 2300*K3**2 - 560*K4**2 - 28*K5**2 - 4*K6**2 + 3958
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {2, 4}, {1, 3}]]
If K is slice False
Contact