Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,1,2,2,2,0,1,1,1,1,1,2,1,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1068'] |
Arrow polynomial of the knot is: 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.218', '6.554', '6.929', '6.932', '6.1014', '6.1024', '6.1068', '6.1526', '6.1664', '6.1676', '6.1755', '6.1763', '6.2065', '6.2078'] |
Outer characteristic polynomial of the knot is: t^7+25t^5+41t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1068'] |
2-strand cable arrow polynomial of the knot is: -320*K1**6 - 192*K1**4*K2**2 + 1248*K1**4*K2 - 4480*K1**4 + 672*K1**3*K2*K3 - 1376*K1**3*K3 - 128*K1**2*K2**4 + 992*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7904*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 13168*K1**2*K2 - 800*K1**2*K3**2 - 32*K1**2*K4**2 - 7324*K1**2 + 768*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 224*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 9760*K1*K2*K3 + 1200*K1*K3*K4 + 72*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 1744*K2**4 - 64*K2**3*K6 - 704*K2**2*K3**2 - 128*K2**2*K4**2 + 1736*K2**2*K4 - 5372*K2**2 + 496*K2*K3*K5 + 48*K2*K4*K6 - 2636*K3**2 - 520*K4**2 - 48*K5**2 - 4*K6**2 + 5918 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1068'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16564', 'vk6.16655', 'vk6.18153', 'vk6.18487', 'vk6.22967', 'vk6.23086', 'vk6.24612', 'vk6.25023', 'vk6.34956', 'vk6.35075', 'vk6.36743', 'vk6.37160', 'vk6.42529', 'vk6.42638', 'vk6.44015', 'vk6.44325', 'vk6.54795', 'vk6.54881', 'vk6.55951', 'vk6.56249', 'vk6.59227', 'vk6.59306', 'vk6.60489', 'vk6.60853', 'vk6.64769', 'vk6.64832', 'vk6.65608', 'vk6.65913', 'vk6.68071', 'vk6.68134', 'vk6.68683', 'vk6.68892'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U3O6U1O5U6U4U2 |
R3 orbit | {'O1O2O3O4U5U3O6U1O5U6U4U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3U1U5O6U4O5U2U6 |
Gauss code of K* | O1O2O3U4U3U5U2O6O5U1O4U6 |
Gauss code of -K* | O1O2O3U4O5U3O6O4U2U6U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 2 -1 0],[ 2 0 2 0 2 1 0],[-1 -2 0 0 1 -1 -1],[ 0 0 0 0 0 0 -1],[-2 -2 -1 0 0 -1 -1],[ 1 -1 1 0 1 0 0],[ 0 0 1 1 1 0 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -1 -2],[-1 1 0 0 -1 -1 -2],[ 0 0 0 0 -1 0 0],[ 0 1 1 1 0 0 0],[ 1 1 1 0 0 0 -1],[ 2 2 2 0 0 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,1,0,1,1,2,0,1,1,2,1,0,0,0,0,1] |
Phi over symmetry | [-2,-1,0,0,1,2,0,1,2,2,2,0,1,1,1,1,1,2,1,2,0] |
Phi of -K | [-2,-1,0,0,1,2,0,2,2,1,2,1,1,1,2,-1,0,1,1,2,0] |
Phi of K* | [-2,-1,0,0,1,2,0,1,2,2,2,0,1,1,1,1,1,2,1,2,0] |
Phi of -K* | [-2,-1,0,0,1,2,1,0,0,2,2,0,0,1,1,-1,0,0,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 2z^2+23z+39 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+23w^2z+39w |
Inner characteristic polynomial | t^6+15t^4+15t^2+1 |
Outer characteristic polynomial | t^7+25t^5+41t^3+7t |
Flat arrow polynomial | 8*K1**3 - 12*K1**2 - 8*K1*K2 - 2*K1 + 6*K2 + 2*K3 + 7 |
2-strand cable arrow polynomial | -320*K1**6 - 192*K1**4*K2**2 + 1248*K1**4*K2 - 4480*K1**4 + 672*K1**3*K2*K3 - 1376*K1**3*K3 - 128*K1**2*K2**4 + 992*K1**2*K2**3 + 128*K1**2*K2**2*K4 - 7904*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 800*K1**2*K2*K4 + 13168*K1**2*K2 - 800*K1**2*K3**2 - 32*K1**2*K4**2 - 7324*K1**2 + 768*K1*K2**3*K3 - 1184*K1*K2**2*K3 - 224*K1*K2**2*K5 - 448*K1*K2*K3*K4 + 9760*K1*K2*K3 + 1200*K1*K3*K4 + 72*K1*K4*K5 - 192*K2**6 + 320*K2**4*K4 - 1744*K2**4 - 64*K2**3*K6 - 704*K2**2*K3**2 - 128*K2**2*K4**2 + 1736*K2**2*K4 - 5372*K2**2 + 496*K2*K3*K5 + 48*K2*K4*K6 - 2636*K3**2 - 520*K4**2 - 48*K5**2 - 4*K6**2 + 5918 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice | False |