Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,1,2,2,3,1,1,0,0,-1,0,0,0,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1067'] |
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314'] |
Outer characteristic polynomial of the knot is: t^7+37t^5+97t^3+13t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1067'] |
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 1456*K1**2*K2**2 - 160*K1**2*K2*K4 + 992*K1**2*K2 - 256*K1**2*K3**2 - 2336*K1**2 + 384*K1*K2**3*K3 - 32*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4560*K1*K2*K3 + 800*K1*K3*K4 + 8*K1*K4*K5 + 32*K1*K5*K6 - 312*K2**4 - 720*K2**2*K3**2 - 72*K2**2*K4**2 + 264*K2**2*K4 - 1914*K2**2 + 520*K2*K3*K5 + 160*K2*K4*K6 - 16*K3**4 + 88*K3**2*K6 - 2180*K3**2 - 410*K4**2 - 116*K5**2 - 110*K6**2 + 2392 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1067'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71465', 'vk6.71515', 'vk6.71521', 'vk6.71992', 'vk6.71994', 'vk6.72045', 'vk6.72047', 'vk6.73220', 'vk6.73229', 'vk6.73251', 'vk6.73262', 'vk6.73662', 'vk6.73665', 'vk6.75147', 'vk6.75163', 'vk6.77087', 'vk6.77135', 'vk6.77145', 'vk6.77428', 'vk6.77438', 'vk6.78078', 'vk6.78083', 'vk6.78111', 'vk6.78119', 'vk6.81286', 'vk6.81531', 'vk6.81539', 'vk6.85466', 'vk6.85477', 'vk6.86879', 'vk6.87721', 'vk6.89513'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U3O6U1O5U6U2U4 |
R3 orbit | {'O1O2O3O4U5U3O6U1O5U6U2U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U3U5O6U4O5U2U6 |
Gauss code of K* | O1O2O3U4U2U5U3O6O5U1O4U6 |
Gauss code of -K* | O1O2O3U4O5U3O6O4U1U6U2U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 0 0 3 -1 0],[ 2 0 1 0 3 1 0],[ 0 -1 0 1 2 0 -1],[ 0 0 -1 0 0 0 -1],[-3 -3 -2 0 0 -2 -1],[ 1 -1 0 0 2 0 0],[ 0 0 1 1 1 0 0]] |
Primitive based matrix | [[ 0 3 0 0 0 -1 -2],[-3 0 0 -1 -2 -2 -3],[ 0 0 0 -1 -1 0 0],[ 0 1 1 0 1 0 0],[ 0 2 1 -1 0 0 -1],[ 1 2 0 0 0 0 -1],[ 2 3 0 0 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,0,0,0,1,2,0,1,2,2,3,1,1,0,0,-1,0,0,0,1,1] |
Phi over symmetry | [-3,0,0,0,1,2,0,1,2,2,3,1,1,0,0,-1,0,0,0,1,1] |
Phi of -K | [-2,-1,0,0,0,3,0,1,2,2,2,1,1,1,2,-1,1,1,1,3,2] |
Phi of K* | [-3,0,0,0,1,2,1,2,3,2,2,-1,1,1,1,1,1,2,1,2,0] |
Phi of -K* | [-2,-1,0,0,0,3,1,0,0,1,3,0,0,0,2,-1,-1,0,1,1,2] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+t^2+t |
Normalized Jones-Krushkal polynomial | 5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2-4w^3z+26w^2z+25w |
Inner characteristic polynomial | t^6+23t^4+40t^2+1 |
Outer characteristic polynomial | t^7+37t^5+97t^3+13t |
Flat arrow polynomial | -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2 |
2-strand cable arrow polynomial | -16*K1**4 + 32*K1**3*K2*K3 - 1456*K1**2*K2**2 - 160*K1**2*K2*K4 + 992*K1**2*K2 - 256*K1**2*K3**2 - 2336*K1**2 + 384*K1*K2**3*K3 - 32*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4560*K1*K2*K3 + 800*K1*K3*K4 + 8*K1*K4*K5 + 32*K1*K5*K6 - 312*K2**4 - 720*K2**2*K3**2 - 72*K2**2*K4**2 + 264*K2**2*K4 - 1914*K2**2 + 520*K2*K3*K5 + 160*K2*K4*K6 - 16*K3**4 + 88*K3**2*K6 - 2180*K3**2 - 410*K4**2 - 116*K5**2 - 110*K6**2 + 2392 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {1, 3}, {2}]] |
If K is slice | False |