Gauss code |
O1O2O3O4U5U2O6U3O5U6U1U4 |
R3 orbit |
{'O1O2O3O4U5U2O6U3O5U6U1U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U4U5O6U2O5U3U6 |
Gauss code of K* |
O1O2O3U2U4U5U3O6O4U1O5U6 |
Gauss code of -K* |
O1O2O3U4O5U3O6O4U1U5U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 0 3 -1 0],[ 1 0 0 1 3 0 0],[ 1 0 0 1 1 0 0],[ 0 -1 -1 0 1 0 0],[-3 -3 -1 -1 0 -2 -1],[ 1 0 0 0 2 0 0],[ 0 0 0 0 1 0 0]] |
Primitive based matrix |
[[ 0 3 0 0 -1 -1 -1],[-3 0 -1 -1 -1 -2 -3],[ 0 1 0 0 0 0 0],[ 0 1 0 0 -1 0 -1],[ 1 1 0 1 0 0 0],[ 1 2 0 0 0 0 0],[ 1 3 0 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,1,1,1,1,1,1,2,3,0,0,0,0,1,0,1,0,0,0] |
Phi over symmetry |
[-3,0,0,1,1,1,1,1,1,2,3,0,0,0,0,1,0,1,0,0,0] |
Phi of -K |
[-1,-1,-1,0,0,3,0,0,0,1,1,0,0,1,3,1,1,2,0,2,2] |
Phi of K* |
[-3,0,0,1,1,1,2,2,1,2,3,0,0,1,0,1,1,1,0,0,0] |
Phi of -K* |
[-1,-1,-1,0,0,3,0,0,0,0,2,0,0,1,1,0,1,3,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+3t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+18t^4+14t^2 |
Outer characteristic polynomial |
t^7+30t^5+34t^3+6t |
Flat arrow polynomial |
-4*K1**2 - 6*K1*K2 + 3*K1 + 2*K2 + 3*K3 + 3 |
2-strand cable arrow polynomial |
288*K1**4*K2 - 3152*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 896*K1**3*K3 - 2720*K1**2*K2**2 - 1568*K1**2*K2*K4 + 7104*K1**2*K2 - 800*K1**2*K3**2 - 32*K1**2*K3*K5 - 272*K1**2*K4**2 - 5088*K1**2 + 96*K1*K2**3*K3 - 320*K1*K2**2*K3 - 128*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 6648*K1*K2*K3 + 2936*K1*K3*K4 + 392*K1*K4*K5 + 8*K1*K5*K6 - 80*K2**4 - 160*K2**2*K3**2 - 56*K2**2*K4**2 + 1032*K2**2*K4 - 4166*K2**2 + 280*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 2756*K3**2 - 1352*K4**2 - 188*K5**2 - 18*K6**2 + 4598 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}]] |
If K is slice |
False |