Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,2,2,2,1,0,1,1,0,0,0,1,1,1] |
Flat knots (up to 7 crossings) with same phi are :['6.1057'] |
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 6*K1*K2 + K2 + 2*K3 + 2 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.362', '6.624', '6.789', '6.859', '6.882', '6.975', '6.989', '6.1048', '6.1057', '6.1158'] |
Outer characteristic polynomial of the knot is: t^7+36t^5+68t^3+19t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1057'] |
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 32*K1**4*K2 - 144*K1**4 + 288*K1**3*K2*K3 - 32*K1**3*K3 - 1152*K1**2*K2**4 + 1728*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 32*K1**2*K2**2*K4 - 6128*K1**2*K2**2 - 288*K1**2*K2*K4 + 4280*K1**2*K2 - 224*K1**2*K3**2 - 3048*K1**2 + 2048*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 - 160*K1*K2**2*K5 + 64*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5872*K1*K2*K3 + 448*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1576*K2**4 - 1008*K2**2*K3**2 - 56*K2**2*K4**2 + 872*K2**2*K4 - 1484*K2**2 + 352*K2*K3*K5 + 24*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 1596*K3**2 - 174*K4**2 - 12*K5**2 - 4*K6**2 + 2364 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1057'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71570', 'vk6.71681', 'vk6.72097', 'vk6.72307', 'vk6.74035', 'vk6.74597', 'vk6.76081', 'vk6.76793', 'vk6.77188', 'vk6.77287', 'vk6.77486', 'vk6.77648', 'vk6.79021', 'vk6.79599', 'vk6.80559', 'vk6.81010', 'vk6.81098', 'vk6.81147', 'vk6.81166', 'vk6.81206', 'vk6.81310', 'vk6.81456', 'vk6.82266', 'vk6.83500', 'vk6.83832', 'vk6.83976', 'vk6.85397', 'vk6.86323', 'vk6.87113', 'vk6.88011', 'vk6.88332', 'vk6.88956'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U1O6U2O5U6U3U4 |
R3 orbit | {'O1O2O3O4U5U1O6U2O5U6U3U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U2U5O6U3O5U4U6 |
Gauss code of K* | O1O2O3U4U5U2U3O6O4U1O5U6 |
Gauss code of -K* | O1O2O3U4O5U3O6O4U1U2U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -1 1 3 -1 0],[ 2 0 1 1 2 1 0],[ 1 -1 0 1 2 1 0],[-1 -1 -1 0 1 0 -1],[-3 -2 -2 -1 0 -2 -1],[ 1 -1 -1 0 2 0 0],[ 0 0 0 1 1 0 0]] |
Primitive based matrix | [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -1 -2 -2 -2],[-1 1 0 -1 0 -1 -1],[ 0 1 1 0 0 0 0],[ 1 2 0 0 0 -1 -1],[ 1 2 1 0 1 0 -1],[ 2 2 1 0 1 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,0,1,1,2,1,1,2,2,2,1,0,1,1,0,0,0,1,1,1] |
Phi over symmetry | [-3,-1,0,1,1,2,1,1,2,2,2,1,0,1,1,0,0,0,1,1,1] |
Phi of -K | [-2,-1,-1,0,1,3,0,0,2,2,3,-1,1,1,2,1,2,2,0,2,1] |
Phi of K* | [-3,-1,0,1,1,2,1,2,2,2,3,0,1,2,2,1,1,2,1,0,0] |
Phi of -K* | [-2,-1,-1,0,1,3,1,1,0,1,2,-1,0,0,2,0,1,2,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+t^2+t |
Normalized Jones-Krushkal polynomial | 4z^2+17z+19 |
Enhanced Jones-Krushkal polynomial | -2w^4z^2+6w^3z^2-8w^3z+25w^2z+19w |
Inner characteristic polynomial | t^6+20t^4+19t^2+4 |
Outer characteristic polynomial | t^7+36t^5+68t^3+19t |
Flat arrow polynomial | 4*K1**3 - 2*K1**2 - 6*K1*K2 + K2 + 2*K3 + 2 |
2-strand cable arrow polynomial | -128*K1**4*K2**2 + 32*K1**4*K2 - 144*K1**4 + 288*K1**3*K2*K3 - 32*K1**3*K3 - 1152*K1**2*K2**4 + 1728*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 32*K1**2*K2**2*K4 - 6128*K1**2*K2**2 - 288*K1**2*K2*K4 + 4280*K1**2*K2 - 224*K1**2*K3**2 - 3048*K1**2 + 2048*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 928*K1*K2**2*K3 - 160*K1*K2**2*K5 + 64*K1*K2*K3**3 - 224*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5872*K1*K2*K3 + 448*K1*K3*K4 - 32*K2**6 + 64*K2**4*K4 - 1576*K2**4 - 1008*K2**2*K3**2 - 56*K2**2*K4**2 + 872*K2**2*K4 - 1484*K2**2 + 352*K2*K3*K5 + 24*K2*K4*K6 - 16*K3**4 + 8*K3**2*K6 - 1596*K3**2 - 174*K4**2 - 12*K5**2 - 4*K6**2 + 2364 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]] |
If K is slice | False |