Min(phi) over symmetries of the knot is: [-2,-1,0,0,1,2,0,0,1,1,2,1,1,0,0,1,0,1,1,2,0] |
Flat knots (up to 7 crossings) with same phi are :['6.1053'] |
Arrow polynomial of the knot is: -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.235', '6.379', '6.411', '6.547', '6.811', '6.818', '6.823', '6.897', '6.898', '6.1008', '6.1053', '6.1109', '6.1110', '6.1130', '6.1222', '6.1239', '6.1303', '6.1307', '6.1342', '6.1491', '6.1495', '6.1496', '6.1519', '6.1592', '6.1593', '6.1642', '6.1652', '6.1653', '6.1671', '6.1673', '6.1717'] |
Outer characteristic polynomial of the knot is: t^7+41t^5+119t^3+7t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1053'] |
2-strand cable arrow polynomial of the knot is: -256*K1**6 + 768*K1**4*K2 - 5056*K1**4 + 96*K1**3*K2*K3 - 704*K1**3*K3 - 2384*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 8752*K1**2*K2 - 1856*K1**2*K3**2 - 32*K1**2*K3*K5 - 240*K1**2*K4**2 - 5324*K1**2 - 448*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 6640*K1*K2*K3 + 3064*K1*K3*K4 + 296*K1*K4*K5 - 96*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 552*K2**2*K4 - 4740*K2**2 + 240*K2*K3*K5 + 32*K2*K4*K6 - 3024*K3**2 - 1184*K4**2 - 148*K5**2 - 12*K6**2 + 5462 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1053'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4767', 'vk6.4777', 'vk6.5104', 'vk6.5114', 'vk6.6337', 'vk6.6766', 'vk6.6772', 'vk6.8294', 'vk6.8304', 'vk6.8747', 'vk6.9668', 'vk6.9674', 'vk6.9979', 'vk6.9985', 'vk6.21017', 'vk6.21029', 'vk6.22441', 'vk6.22453', 'vk6.28470', 'vk6.40245', 'vk6.40249', 'vk6.42171', 'vk6.46747', 'vk6.46751', 'vk6.48801', 'vk6.49018', 'vk6.49024', 'vk6.49834', 'vk6.49844', 'vk6.51501', 'vk6.58972', 'vk6.69808'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U5U6O5U3O6U1U4U2 |
R3 orbit | {'O1O2O3O4U5U6O5U3O6U1U4U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U3U1U4O5U2O6U5U6 |
Gauss code of K* | O1O2O3U1U3U4U2O5O6U5O4U6 |
Gauss code of -K* | O1O2O3U4O5U6O4O6U2U5U1U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 1 0 2 -1 0],[ 2 0 2 1 2 1 2],[-1 -2 0 0 1 -2 -1],[ 0 -1 0 0 0 0 1],[-2 -2 -1 0 0 -3 -1],[ 1 -1 2 0 3 0 0],[ 0 -2 1 -1 1 0 0]] |
Primitive based matrix | [[ 0 2 1 0 0 -1 -2],[-2 0 -1 0 -1 -3 -2],[-1 1 0 0 -1 -2 -2],[ 0 0 0 0 1 0 -1],[ 0 1 1 -1 0 0 -2],[ 1 3 2 0 0 0 -1],[ 2 2 2 1 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-1,0,0,1,2,1,0,1,3,2,0,1,2,2,-1,0,1,0,2,1] |
Phi over symmetry | [-2,-1,0,0,1,2,0,0,1,1,2,1,1,0,0,1,0,1,1,2,0] |
Phi of -K | [-2,-1,0,0,1,2,0,0,1,1,2,1,1,0,0,1,0,1,1,2,0] |
Phi of K* | [-2,-1,0,0,1,2,0,1,2,0,2,0,1,0,1,-1,1,0,1,1,0] |
Phi of -K* | [-2,-1,0,0,1,2,1,1,2,2,2,0,0,2,3,1,0,0,1,1,1] |
Symmetry type of based matrix | c |
u-polynomial | 0 |
Normalized Jones-Krushkal polynomial | 21z+43 |
Enhanced Jones-Krushkal polynomial | 21w^2z+43w |
Inner characteristic polynomial | t^6+31t^4+87t^2+4 |
Outer characteristic polynomial | t^7+41t^5+119t^3+7t |
Flat arrow polynomial | -8*K1**2 - 4*K1*K2 + 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial | -256*K1**6 + 768*K1**4*K2 - 5056*K1**4 + 96*K1**3*K2*K3 - 704*K1**3*K3 - 2384*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 8752*K1**2*K2 - 1856*K1**2*K3**2 - 32*K1**2*K3*K5 - 240*K1**2*K4**2 - 5324*K1**2 - 448*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 6640*K1*K2*K3 + 3064*K1*K3*K4 + 296*K1*K4*K5 - 96*K2**4 - 160*K2**2*K3**2 - 16*K2**2*K4**2 + 552*K2**2*K4 - 4740*K2**2 + 240*K2*K3*K5 + 32*K2*K4*K6 - 3024*K3**2 - 1184*K4**2 - 148*K5**2 - 12*K6**2 + 5462 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{3, 6}, {2, 5}, {1, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {2, 3}, {1}], [{6}, {2, 5}, {1, 4}, {3}]] |
If K is slice | False |