Gauss code |
O1O2O3O4U5U6O5U3O6U1U2U4 |
R3 orbit |
{'O1O2O3O4U5U6O5U3O6U1U2U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U3U4O5U2O6U5U6 |
Gauss code of K* |
O1O2O3U1U2U4U3O5O6U5O4U6 |
Gauss code of -K* |
O1O2O3U4O5U6O4O6U1U5U2U3 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 0 0 3 -1 0],[ 2 0 1 1 3 1 2],[ 0 -1 0 1 2 -1 0],[ 0 -1 -1 0 0 0 1],[-3 -3 -2 0 0 -4 -2],[ 1 -1 1 0 4 0 0],[ 0 -2 0 -1 2 0 0]] |
Primitive based matrix |
[[ 0 3 0 0 0 -1 -2],[-3 0 0 -2 -2 -4 -3],[ 0 0 0 1 -1 0 -1],[ 0 2 -1 0 0 0 -2],[ 0 2 1 0 0 -1 -1],[ 1 4 0 0 1 0 -1],[ 2 3 1 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,0,0,0,1,2,0,2,2,4,3,-1,1,0,1,0,0,2,1,1,1] |
Phi over symmetry |
[-3,0,0,0,1,2,0,2,2,4,3,-1,1,0,1,0,0,2,1,1,1] |
Phi of -K |
[-2,-1,0,0,0,3,0,0,1,1,2,1,0,1,0,0,1,1,-1,1,3] |
Phi of K* |
[-3,0,0,0,1,2,1,1,3,0,2,0,-1,1,0,1,0,1,1,1,0] |
Phi of -K* |
[-2,-1,0,0,0,3,1,1,1,2,3,0,1,0,4,-1,1,0,0,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
3z^2+20z+29 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+20w^2z+29w |
Inner characteristic polynomial |
t^6+43t^4+154t^2+9 |
Outer characteristic polynomial |
t^7+57t^5+211t^3+13t |
Flat arrow polynomial |
8*K1**3 - 6*K1**2 - 6*K1*K2 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-256*K1**4*K2**2 + 448*K1**4*K2 - 1312*K1**4 + 384*K1**3*K2*K3 - 416*K1**3*K3 - 320*K1**2*K2**4 + 1280*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 64*K1**2*K2**2*K4 - 5232*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 6880*K1**2*K2 - 320*K1**2*K3**2 - 4468*K1**2 + 896*K1*K2**3*K3 + 96*K1*K2**2*K3*K4 - 1088*K1*K2**2*K3 - 128*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 5112*K1*K2*K3 + 416*K1*K3*K4 - 64*K2**6 + 96*K2**4*K4 - 1320*K2**4 - 608*K2**2*K3**2 - 72*K2**2*K4**2 + 968*K2**2*K4 - 2566*K2**2 + 216*K2*K3*K5 + 16*K2*K4*K6 - 1216*K3**2 - 186*K4**2 - 12*K5**2 - 2*K6**2 + 3128 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {5}, {2, 3}, {1}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |