Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1041

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,0,1,1,0,0,-1,0]
Flat knots (up to 7 crossings) with same phi are :['6.1041']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+30t^5+54t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1041']
2-strand cable arrow polynomial of the knot is: -384*K1**4*K2**2 + 2272*K1**4*K2 - 5280*K1**4 + 768*K1**3*K2*K3 - 1248*K1**3*K3 - 256*K1**2*K2**4 + 1184*K1**2*K2**3 - 7888*K1**2*K2**2 - 800*K1**2*K2*K4 + 11536*K1**2*K2 - 352*K1**2*K3**2 - 32*K1**2*K4**2 - 5376*K1**2 + 480*K1*K2**3*K3 - 960*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7536*K1*K2*K3 + 864*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 856*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1072*K2**2*K4 - 4486*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 1860*K3**2 - 466*K4**2 - 52*K5**2 - 2*K6**2 + 4736
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1041']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4851', 'vk6.4861', 'vk6.5195', 'vk6.5204', 'vk6.6426', 'vk6.6438', 'vk6.6854', 'vk6.8391', 'vk6.8395', 'vk6.8813', 'vk6.8816', 'vk6.9753', 'vk6.9756', 'vk6.10049', 'vk6.20781', 'vk6.20790', 'vk6.22184', 'vk6.29750', 'vk6.39815', 'vk6.39825', 'vk6.46379', 'vk6.46385', 'vk6.47956', 'vk6.47962', 'vk6.49086', 'vk6.49089', 'vk6.49922', 'vk6.51336', 'vk6.51345', 'vk6.51553', 'vk6.58807', 'vk6.63271']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U3O5U2O6U4U1U6
R3 orbit {'O1O2O3O4U5U3O5U2O6U4U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U4U1O5U3O6U2U6
Gauss code of K* O1O2O3U2U4U5U1O6O5U6O4U3
Gauss code of -K* O1O2O3U1O4U5O6O5U3U6U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 1 -1 2],[ 1 0 -1 0 2 0 2],[ 1 1 0 1 2 0 1],[ 0 0 -1 0 0 0 1],[-1 -2 -2 0 0 -1 1],[ 1 0 0 0 1 0 2],[-2 -2 -1 -1 -1 -2 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 -1 -1 -1 -2 -2],[-1 1 0 0 -2 -1 -2],[ 0 1 0 0 -1 0 0],[ 1 1 2 1 0 0 1],[ 1 2 1 0 0 0 0],[ 1 2 2 0 -1 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,1,1,1,2,2,0,2,1,2,1,0,0,0,-1,0]
Phi over symmetry [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,0,1,1,0,0,-1,0]
Phi of -K [-1,-1,-1,0,1,2,-1,0,0,0,2,0,1,0,1,1,1,1,1,1,0]
Phi of K* [-2,-1,0,1,1,1,0,1,1,1,2,1,0,1,0,1,1,0,0,-1,0]
Phi of -K* [-1,-1,-1,0,1,2,-1,0,0,2,2,0,1,2,1,0,1,2,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 2z^2+23z+39
Enhanced Jones-Krushkal polynomial 2w^3z^2+23w^2z+39w
Inner characteristic polynomial t^6+22t^4+35t^2+9
Outer characteristic polynomial t^7+30t^5+54t^3+16t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -384*K1**4*K2**2 + 2272*K1**4*K2 - 5280*K1**4 + 768*K1**3*K2*K3 - 1248*K1**3*K3 - 256*K1**2*K2**4 + 1184*K1**2*K2**3 - 7888*K1**2*K2**2 - 800*K1**2*K2*K4 + 11536*K1**2*K2 - 352*K1**2*K3**2 - 32*K1**2*K4**2 - 5376*K1**2 + 480*K1*K2**3*K3 - 960*K1*K2**2*K3 - 96*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 7536*K1*K2*K3 + 864*K1*K3*K4 + 104*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 856*K2**4 - 176*K2**2*K3**2 - 48*K2**2*K4**2 + 1072*K2**2*K4 - 4486*K2**2 + 112*K2*K3*K5 + 16*K2*K4*K6 - 1860*K3**2 - 466*K4**2 - 52*K5**2 - 2*K6**2 + 4736
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact