Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1035

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,0,0,2,-1,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1035']
Arrow polynomial of the knot is: -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.574', '6.593', '6.604', '6.649', '6.650', '6.673', '6.690', '6.783', '6.973', '6.985', '6.1033', '6.1035']
Outer characteristic polynomial of the knot is: t^7+50t^5+113t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1035']
2-strand cable arrow polynomial of the knot is: -256*K1**6 - 256*K1**4*K2**2 + 1088*K1**4*K2 - 3584*K1**4 + 288*K1**3*K2*K3 - 288*K1**3*K3 + 800*K1**2*K2**3 - 6880*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 8752*K1**2*K2 - 1088*K1**2*K3**2 - 3924*K1**2 - 992*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 7344*K1*K2*K3 + 1264*K1*K3*K4 + 24*K1*K4*K5 - 1592*K2**4 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 1600*K2**2*K4 - 3582*K2**2 + 584*K2*K3*K5 + 16*K2*K4*K6 + 24*K3**2*K6 - 2120*K3**2 - 602*K4**2 - 156*K5**2 - 18*K6**2 + 4184
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1035']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11043', 'vk6.11121', 'vk6.12209', 'vk6.12316', 'vk6.16427', 'vk6.19220', 'vk6.19320', 'vk6.19513', 'vk6.19615', 'vk6.22735', 'vk6.22834', 'vk6.26032', 'vk6.26088', 'vk6.26416', 'vk6.26512', 'vk6.30620', 'vk6.30715', 'vk6.31926', 'vk6.34780', 'vk6.38093', 'vk6.38120', 'vk6.42398', 'vk6.44615', 'vk6.44742', 'vk6.51849', 'vk6.52713', 'vk6.52816', 'vk6.56577', 'vk6.56632', 'vk6.64725', 'vk6.66273', 'vk6.66296']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5U2O5U1O6U3U6U4
R3 orbit {'O1O2O3O4U5U2O5U1O6U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U2O5U4O6U3U6
Gauss code of K* O1O2O3U4U5U1U3O6O5U6O4U2
Gauss code of -K* O1O2O3U2O4U5O6O5U1U3U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 0 3 -1 1],[ 2 0 1 2 3 1 1],[ 1 -1 0 0 1 1 1],[ 0 -2 0 0 2 0 1],[-3 -3 -1 -2 0 -3 0],[ 1 -1 -1 0 3 0 1],[-1 -1 -1 -1 0 -1 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 0 -2 -1 -3 -3],[-1 0 0 -1 -1 -1 -1],[ 0 2 1 0 0 0 -2],[ 1 1 1 0 0 1 -1],[ 1 3 1 0 -1 0 -1],[ 2 3 1 2 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,0,0,2,-1,1,1]
Phi over symmetry [-3,-1,0,1,1,2,0,2,1,3,3,1,1,1,1,0,0,2,-1,1,1]
Phi of -K [-2,-1,-1,0,1,3,0,0,0,2,2,-1,1,1,3,1,1,1,0,1,2]
Phi of K* [-3,-1,0,1,1,2,2,1,1,3,2,0,1,1,2,1,1,0,-1,0,0]
Phi of -K* [-2,-1,-1,0,1,3,1,1,2,1,3,-1,0,1,3,0,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 4z^2+25z+35
Enhanced Jones-Krushkal polynomial 4w^3z^2+25w^2z+35w
Inner characteristic polynomial t^6+34t^4+64t^2+1
Outer characteristic polynomial t^7+50t^5+113t^3+6t
Flat arrow polynomial -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -256*K1**6 - 256*K1**4*K2**2 + 1088*K1**4*K2 - 3584*K1**4 + 288*K1**3*K2*K3 - 288*K1**3*K3 + 800*K1**2*K2**3 - 6880*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 64*K1**2*K2*K4 + 8752*K1**2*K2 - 1088*K1**2*K3**2 - 3924*K1**2 - 992*K1*K2**2*K3 - 192*K1*K2*K3*K4 + 7344*K1*K2*K3 + 1264*K1*K3*K4 + 24*K1*K4*K5 - 1592*K2**4 - 432*K2**2*K3**2 - 8*K2**2*K4**2 + 1600*K2**2*K4 - 3582*K2**2 + 584*K2*K3*K5 + 16*K2*K4*K6 + 24*K3**2*K6 - 2120*K3**2 - 602*K4**2 - 156*K5**2 - 18*K6**2 + 4184
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact