Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1029

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,1,1,1,1,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.1029']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+26t^5+42t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1029']
2-strand cable arrow polynomial of the knot is: -64*K1**6 - 256*K1**4*K2**2 + 2080*K1**4*K2 - 4048*K1**4 - 256*K1**3*K2**2*K3 + 448*K1**3*K2*K3 - 1536*K1**3*K3 + 1376*K1**2*K2**3 - 6160*K1**2*K2**2 + 288*K1**2*K2*K3**2 - 864*K1**2*K2*K4 + 9040*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 5100*K1**2 + 480*K1*K2**3*K3 - 896*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7336*K1*K2*K3 + 1360*K1*K3*K4 + 120*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 920*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 1040*K2**2*K4 - 3870*K2**2 + 328*K2*K3*K5 + 16*K2*K4*K6 - 2168*K3**2 - 654*K4**2 - 100*K5**2 - 2*K6**2 + 4404
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1029']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4066', 'vk6.4097', 'vk6.5304', 'vk6.5335', 'vk6.7438', 'vk6.7465', 'vk6.8935', 'vk6.8966', 'vk6.10106', 'vk6.10273', 'vk6.10296', 'vk6.14560', 'vk6.15295', 'vk6.15421', 'vk6.15784', 'vk6.16199', 'vk6.29856', 'vk6.29887', 'vk6.33929', 'vk6.34008', 'vk6.34227', 'vk6.34392', 'vk6.48452', 'vk6.49151', 'vk6.50206', 'vk6.50231', 'vk6.51582', 'vk6.53972', 'vk6.54033', 'vk6.54184', 'vk6.54477', 'vk6.63303']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U5O6U4O5U1U6U2
R3 orbit {'O1O2O3O4U3U5O6U4O5U1U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U3U5U4O6U1O5U6U2
Gauss code of K* O1O2O3U1U3U4U5O4O6U2O5U6
Gauss code of -K* O1O2O3U4O5U2O4O6U5U6U1U3
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 1 -1 1 0 1],[ 2 0 2 -1 2 1 1],[-1 -2 0 -1 1 -1 0],[ 1 1 1 0 1 0 1],[-1 -2 -1 -1 0 -1 0],[ 0 -1 1 0 1 0 1],[-1 -1 0 -1 0 -1 0]]
Primitive based matrix [[ 0 1 1 1 0 -1 -2],[-1 0 1 0 -1 -1 -2],[-1 -1 0 0 -1 -1 -2],[-1 0 0 0 -1 -1 -1],[ 0 1 1 1 0 0 -1],[ 1 1 1 1 0 0 1],[ 2 2 2 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-1,-1,-1,0,1,2,-1,0,1,1,2,0,1,1,2,1,1,1,0,1,-1]
Phi over symmetry [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,1,1,1,1,0,0,-1]
Phi of -K [-2,-1,0,1,1,1,2,1,1,1,2,1,1,1,1,0,0,0,-1,0,0]
Phi of K* [-1,-1,-1,0,1,2,-1,0,0,1,1,0,0,1,1,0,1,2,1,1,2]
Phi of -K* [-2,-1,0,1,1,1,-1,1,1,2,2,0,1,1,1,1,1,1,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 2z^2+21z+35
Enhanced Jones-Krushkal polynomial 2w^3z^2-2w^3z+23w^2z+35w
Inner characteristic polynomial t^6+18t^4+21t^2+4
Outer characteristic polynomial t^7+26t^5+42t^3+13t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**6 - 256*K1**4*K2**2 + 2080*K1**4*K2 - 4048*K1**4 - 256*K1**3*K2**2*K3 + 448*K1**3*K2*K3 - 1536*K1**3*K3 + 1376*K1**2*K2**3 - 6160*K1**2*K2**2 + 288*K1**2*K2*K3**2 - 864*K1**2*K2*K4 + 9040*K1**2*K2 - 592*K1**2*K3**2 - 32*K1**2*K3*K5 - 32*K1**2*K4**2 - 5100*K1**2 + 480*K1*K2**3*K3 - 896*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 7336*K1*K2*K3 + 1360*K1*K3*K4 + 120*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 920*K2**4 - 528*K2**2*K3**2 - 48*K2**2*K4**2 + 1040*K2**2*K4 - 3870*K2**2 + 328*K2*K3*K5 + 16*K2*K4*K6 - 2168*K3**2 - 654*K4**2 - 100*K5**2 - 2*K6**2 + 4404
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact