Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.1026

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,1,3,2,0,2,2,2,0,0,0,0,1,1]
Flat knots (up to 7 crossings) with same phi are :['6.1026']
Arrow polynomial of the knot is: -6*K1**2 - 6*K1*K2 + 3*K1 + 3*K2 + 3*K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.458', '6.601', '6.611', '6.995', '6.1026', '6.1037']
Outer characteristic polynomial of the knot is: t^7+48t^5+102t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1026']
2-strand cable arrow polynomial of the knot is: 448*K1**4*K2 - 3120*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1152*K1**3*K3 - 2656*K1**2*K2**2 - 704*K1**2*K2*K4 + 7032*K1**2*K2 - 1440*K1**2*K3**2 - 96*K1**2*K3*K5 - 64*K1**2*K4**2 - 4876*K1**2 + 96*K1*K2**3*K3 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 6896*K1*K2*K3 + 2552*K1*K3*K4 + 232*K1*K4*K5 - 120*K2**4 - 336*K2**2*K3**2 - 24*K2**2*K4**2 + 768*K2**2*K4 - 4038*K2**2 + 360*K2*K3*K5 + 40*K2*K4*K6 - 48*K3**4 + 32*K3**2*K6 - 2720*K3**2 - 1034*K4**2 - 148*K5**2 - 18*K6**2 + 4424
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1026']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11023', 'vk6.11101', 'vk6.12193', 'vk6.12300', 'vk6.18195', 'vk6.18531', 'vk6.24650', 'vk6.25077', 'vk6.30592', 'vk6.30687', 'vk6.31862', 'vk6.31908', 'vk6.36789', 'vk6.37240', 'vk6.44029', 'vk6.44370', 'vk6.51822', 'vk6.51889', 'vk6.52694', 'vk6.52788', 'vk6.55990', 'vk6.56263', 'vk6.60521', 'vk6.60863', 'vk6.63502', 'vk6.63546', 'vk6.63984', 'vk6.64028', 'vk6.65655', 'vk6.65935', 'vk6.68699', 'vk6.68909']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U3U5O6U1O5U2U6U4
R3 orbit {'O1O2O3O4U3U5O6U1O5U2U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U3O6U4O5U6U2
Gauss code of K* O1O2O3U4U1U5U3O5O6U2O4U6
Gauss code of -K* O1O2O3U4O5U2O4O6U1U6U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -1 -1 3 0 1],[ 2 0 0 0 3 2 1],[ 1 0 0 0 3 1 0],[ 1 0 0 0 1 1 0],[-3 -3 -3 -1 0 -2 -1],[ 0 -2 -1 -1 2 0 1],[-1 -1 0 0 1 -1 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -2 -1 -3 -3],[-1 1 0 -1 0 0 -1],[ 0 2 1 0 -1 -1 -2],[ 1 1 0 1 0 0 0],[ 1 3 0 1 0 0 0],[ 2 3 1 2 0 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,2,1,3,3,1,0,0,1,1,1,2,0,0,0]
Phi over symmetry [-3,-1,0,1,1,2,1,1,1,3,2,0,2,2,2,0,0,0,0,1,1]
Phi of -K [-2,-1,-1,0,1,3,1,1,0,2,2,0,0,2,1,0,2,3,0,1,1]
Phi of K* [-3,-1,0,1,1,2,1,1,1,3,2,0,2,2,2,0,0,0,0,1,1]
Phi of -K* [-2,-1,-1,0,1,3,0,0,2,1,3,0,1,0,1,1,0,3,1,2,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+32t^4+55t^2+4
Outer characteristic polynomial t^7+48t^5+102t^3+10t
Flat arrow polynomial -6*K1**2 - 6*K1*K2 + 3*K1 + 3*K2 + 3*K3 + 4
2-strand cable arrow polynomial 448*K1**4*K2 - 3120*K1**4 + 384*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1152*K1**3*K3 - 2656*K1**2*K2**2 - 704*K1**2*K2*K4 + 7032*K1**2*K2 - 1440*K1**2*K3**2 - 96*K1**2*K3*K5 - 64*K1**2*K4**2 - 4876*K1**2 + 96*K1*K2**3*K3 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 6896*K1*K2*K3 + 2552*K1*K3*K4 + 232*K1*K4*K5 - 120*K2**4 - 336*K2**2*K3**2 - 24*K2**2*K4**2 + 768*K2**2*K4 - 4038*K2**2 + 360*K2*K3*K5 + 40*K2*K4*K6 - 48*K3**4 + 32*K3**2*K6 - 2720*K3**2 - 1034*K4**2 - 148*K5**2 - 18*K6**2 + 4424
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{4, 6}, {5}, {3}, {2}, {1}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact