Gauss code |
O1O2O3O4U3U2O5U1O6U5U6U4 |
R3 orbit |
{'O1O2O3O4U3U2O5U1O6U5U6U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U6O5U4O6U3U2 |
Gauss code of K* |
O1O2O3U4U5U6U3O6O5U1O4U2 |
Gauss code of -K* |
O1O2O3U2O4U3O5O6U1U6U5U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -2 -1 -1 3 0 1],[ 2 0 0 0 4 1 1],[ 1 0 0 0 2 0 0],[ 1 0 0 0 1 0 0],[-3 -4 -2 -1 0 -1 1],[ 0 -1 0 0 1 0 1],[-1 -1 0 0 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 1 -1 -1 -2 -4],[-1 -1 0 -1 0 0 -1],[ 0 1 1 0 0 0 -1],[ 1 1 0 0 0 0 0],[ 1 2 0 0 0 0 0],[ 2 4 1 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,1,1,2,-1,1,1,2,4,1,0,0,1,0,0,1,0,0,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,1,2,4,1,0,0,1,0,0,1,0,0,0] |
Phi of -K |
[-2,-1,-1,0,1,3,1,1,1,2,1,0,1,2,2,1,2,3,0,2,3] |
Phi of K* |
[-3,-1,0,1,1,2,3,2,2,3,1,0,2,2,2,1,1,1,0,1,1] |
Phi of -K* |
[-2,-1,-1,0,1,3,0,0,1,1,4,0,0,0,1,0,0,2,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^3+t^2+t |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+26t^4+19t^2 |
Outer characteristic polynomial |
t^7+42t^5+40t^3+4t |
Flat arrow polynomial |
-2*K1**2 - 6*K1*K2 + 3*K1 + K2 + 3*K3 + 2 |
2-strand cable arrow polynomial |
-1360*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 576*K1**3*K3 + 96*K1**2*K2**2*K4 - 1616*K1**2*K2**2 - 608*K1**2*K2*K4 + 4656*K1**2*K2 - 544*K1**2*K3**2 - 176*K1**2*K4**2 - 3748*K1**2 - 640*K1*K2**2*K3 - 96*K1*K2**2*K5 + 32*K1*K2*K3**3 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4272*K1*K2*K3 + 1704*K1*K3*K4 + 192*K1*K4*K5 + 8*K1*K5*K6 - 40*K2**4 - 128*K2**2*K3**2 - 56*K2**2*K4**2 + 920*K2**2*K4 - 3198*K2**2 + 360*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 + 16*K3**2*K6 - 1872*K3**2 - 870*K4**2 - 148*K5**2 - 10*K6**2 + 3212 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{6}, {2, 5}, {3, 4}, {1}]] |
If K is slice |
False |