Min(phi) over symmetries of the knot is: [-3,-1,0,0,2,2,1,1,2,1,3,0,1,2,2,0,1,1,0,1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.1010'] |
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.552', '6.652', '6.764', '6.776', '6.784', '6.839', '6.903', '6.1010', '6.1166'] |
Outer characteristic polynomial of the knot is: t^7+55t^5+76t^3+4t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.1010'] |
2-strand cable arrow polynomial of the knot is: -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 256*K1**2*K2**4 + 608*K1**2*K2**3 - 4112*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 128*K1**2*K2*K4 + 4656*K1**2*K2 - 96*K1**2*K3**2 - 16*K1**2*K4**2 - 4148*K1**2 + 1024*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 128*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5496*K1*K2*K3 + 560*K1*K3*K4 + 168*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1360*K2**4 - 32*K2**3*K6 - 608*K2**2*K3**2 - 24*K2**2*K4**2 + 1384*K2**2*K4 - 2704*K2**2 - 32*K2*K3**2*K4 + 352*K2*K3*K5 + 32*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 1784*K3**2 - 436*K4**2 - 108*K5**2 - 8*K6**2 + 3114 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.1010'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71467', 'vk6.71519', 'vk6.71529', 'vk6.71996', 'vk6.72008', 'vk6.72049', 'vk6.72059', 'vk6.73218', 'vk6.73227', 'vk6.73249', 'vk6.73260', 'vk6.73661', 'vk6.73672', 'vk6.75141', 'vk6.75158', 'vk6.77094', 'vk6.77143', 'vk6.77147', 'vk6.77440', 'vk6.77442', 'vk6.78076', 'vk6.78081', 'vk6.78108', 'vk6.78117', 'vk6.81292', 'vk6.81540', 'vk6.81554', 'vk6.85474', 'vk6.85476', 'vk6.86890', 'vk6.87730', 'vk6.89510'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U2U5O6U3O5U1U6U4 |
R3 orbit | {'O1O2O3O4U2U5O6U3O5U1U6U4'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U1U5U4O6U2O5U6U3 |
Gauss code of K* | O1O2O3U1U4U5U3O4O6U2O5U6 |
Gauss code of -K* | O1O2O3U4O5U2O4O6U1U5U6U3 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -2 -2 0 3 0 1],[ 2 0 -1 2 4 1 1],[ 2 1 0 1 2 1 1],[ 0 -2 -1 0 1 0 0],[-3 -4 -2 -1 0 -2 -1],[ 0 -1 -1 0 2 0 1],[-1 -1 -1 0 1 -1 0]] |
Primitive based matrix | [[ 0 3 1 0 0 -2 -2],[-3 0 -1 -1 -2 -2 -4],[-1 1 0 0 -1 -1 -1],[ 0 1 0 0 0 -1 -2],[ 0 2 1 0 0 -1 -1],[ 2 2 1 1 1 0 1],[ 2 4 1 2 1 -1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,0,0,2,2,1,1,2,2,4,0,1,1,1,0,1,2,1,1,-1] |
Phi over symmetry | [-3,-1,0,0,2,2,1,1,2,1,3,0,1,2,2,0,1,1,0,1,-1] |
Phi of -K | [-2,-2,0,0,1,3,-1,1,1,2,3,0,1,2,1,0,1,2,0,1,1] |
Phi of K* | [-3,-1,0,0,2,2,1,1,2,1,3,0,1,2,2,0,1,1,0,1,-1] |
Phi of -K* | [-2,-2,0,0,1,3,-1,1,2,1,4,1,1,1,2,0,1,2,0,1,1] |
Symmetry type of based matrix | c |
u-polynomial | -t^3+2t^2-t |
Normalized Jones-Krushkal polynomial | 6z^2+23z+23 |
Enhanced Jones-Krushkal polynomial | 6w^3z^2+23w^2z+23w |
Inner characteristic polynomial | t^6+37t^4+32t^2 |
Outer characteristic polynomial | t^7+55t^5+76t^3+4t |
Flat arrow polynomial | 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3 |
2-strand cable arrow polynomial | -16*K1**4 + 32*K1**3*K2*K3 - 64*K1**3*K3 - 256*K1**2*K2**4 + 608*K1**2*K2**3 - 4112*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 128*K1**2*K2*K4 + 4656*K1**2*K2 - 96*K1**2*K3**2 - 16*K1**2*K4**2 - 4148*K1**2 + 1024*K1*K2**3*K3 - 1120*K1*K2**2*K3 - 128*K1*K2**2*K5 - 320*K1*K2*K3*K4 + 5496*K1*K2*K3 + 560*K1*K3*K4 + 168*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 1360*K2**4 - 32*K2**3*K6 - 608*K2**2*K3**2 - 24*K2**2*K4**2 + 1384*K2**2*K4 - 2704*K2**2 - 32*K2*K3**2*K4 + 352*K2*K3*K5 + 32*K2*K4*K6 - 16*K3**4 + 24*K3**2*K6 - 1784*K3**2 - 436*K4**2 - 108*K5**2 - 8*K6**2 + 3114 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{2, 6}, {1, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}]] |
If K is slice | False |