Gauss code |
O1O2O3O4O5O6U2U6U3U4U1U5 |
R3 orbit |
{'O1O2O3O4O5O6U2U6U3U4U1U5'} |
R3 orbit length |
1 |
Gauss code of -K |
Same |
Gauss code of K* |
O1O2O3O4O5O6U5U1U3U4U6U2 |
Gauss code of -K* |
O1O2O3O4O5O6U5U1U3U4U6U2 |
Diagrammatic symmetry type |
r |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -4 -1 1 4 1],[ 1 0 -3 0 2 4 1],[ 4 3 0 2 3 4 1],[ 1 0 -2 0 1 2 0],[-1 -2 -3 -1 0 1 0],[-4 -4 -4 -2 -1 0 0],[-1 -1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 4 1 1 -1 -1 -4],[-4 0 0 -1 -2 -4 -4],[-1 0 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -3],[ 1 2 0 1 0 0 -2],[ 1 4 1 2 0 0 -3],[ 4 4 1 3 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-4,-1,-1,1,1,4,0,1,2,4,4,0,0,1,1,1,2,3,0,2,3] |
Phi over symmetry |
[-4,-1,-1,1,1,4,0,1,2,4,4,0,0,1,1,1,2,3,0,2,3] |
Phi of -K |
[-4,-1,-1,1,1,4,0,1,2,4,4,0,0,1,1,1,2,3,0,2,3] |
Phi of K* |
[-4,-1,-1,1,1,4,2,3,1,3,4,0,0,1,2,1,2,4,0,0,1] |
Phi of -K* |
[-4,-1,-1,1,1,4,2,3,1,3,4,0,0,1,2,1,2,4,0,0,1] |
Symmetry type of based matrix |
r |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+21z+27 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+21w^2z+27w |
Inner characteristic polynomial |
t^6+66t^4+23t^2 |
Outer characteristic polynomial |
t^7+102t^5+97t^3+4t |
Flat arrow polynomial |
8*K1**3 + 8*K1**2*K2 - 8*K1**2 - 4*K1*K2 - 4*K1*K3 - 4*K1 + 2*K2 + 3 |
2-strand cable arrow polynomial |
-512*K1**4*K2**2 + 768*K1**4*K2 - 1280*K1**4 + 960*K1**3*K2*K3 - 512*K1**3*K3 - 768*K1**2*K2**4 + 1280*K1**2*K2**3 - 512*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 4864*K1**2*K2**2 + 256*K1**2*K2*K3**2 + 64*K1**2*K2*K3*K5 - 320*K1**2*K2*K4 + 4752*K1**2*K2 - 832*K1**2*K3**2 - 2960*K1**2 + 1984*K1*K2**3*K3 + 384*K1*K2**2*K3*K4 - 1216*K1*K2**2*K3 - 512*K1*K2**2*K5 + 384*K1*K2*K3**3 - 192*K1*K2*K3*K4 - 192*K1*K2*K3*K6 + 5328*K1*K2*K3 + 896*K1*K3*K4 - 192*K2**6 - 384*K2**4*K3**2 - 64*K2**4*K4**2 + 320*K2**4*K4 - 1472*K2**4 + 384*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 128*K2**2*K3**4 + 128*K2**2*K3**2*K6 - 1408*K2**2*K3**2 - 240*K2**2*K4**2 + 1232*K2**2*K4 - 96*K2**2*K5**2 - 48*K2**2*K6**2 - 1936*K2**2 - 192*K2*K3**2*K4 + 816*K2*K3*K5 + 160*K2*K4*K6 - 64*K3**4 + 144*K3**2*K6 - 1584*K3**2 - 388*K4**2 - 128*K5**2 - 64*K6**2 + 2690 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
False |