Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 5.9

Min(phi) over symmetries of the knot is: [-4,0,0,2,2,1,3,2,4,1,1,1,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['5.9']
Arrow polynomial of the knot is: 8*K1**4 - 4*K1**2*K2 - 4*K1**2 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.9', '7.378', '7.925', '7.1773', '7.2266', '7.2859', '7.2873', '7.3320', '7.4764', '7.5374', '7.5556', '7.6318', '7.6647', '7.6737', '7.7228', '7.7231', '7.7583', '7.7769', '7.8121', '7.9277', '7.9299', '7.9319', '7.12484', '7.13399', '7.14738', '7.15188', '7.16409', '7.16419', '7.16430', '7.16585', '7.16591', '7.17482', '7.17488', '7.17510', '7.17540', '7.31327', '7.31341']
Outer characteristic polynomial of the knot is: t^6+60t^4+47t^2
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.9', '7.3332']
2-strand cable arrow polynomial of the knot is: -128*K2**8 + 128*K2**6*K4 - 256*K2**6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 640*K2**4 - 96*K2**2*K4**2 + 480*K2**2*K4 + 272*K2**2 + 16*K2*K4*K6 - 64*K4**2 + 62
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.9']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.1950', 'vk5.1954', 'vk5.1958', 'vk5.1961', 'vk5.1965', 'vk5.1968', 'vk5.1970', 'vk5.2078', 'vk5.2158', 'vk5.2431']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U4U5U2U3
R3 orbit {'O1O2O3O4O5U1U4U5U2U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U3U4U1U2U5
Gauss code of K* Same
Gauss code of -K* O1O2O3O4O5U3U4U1U2U5
Diagrammatic symmetry type +
Flat genus of the diagram 2
If K is checkerboard colorable True
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 2 0 2],[ 4 0 3 4 1 2],[ 0 -3 0 1 -1 1],[-2 -4 -1 0 -1 1],[ 0 -1 1 1 0 1],[-2 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 0 0 -4],[-2 0 1 -1 -1 -4],[-2 -1 0 -1 -1 -2],[ 0 1 1 0 1 -1],[ 0 1 1 -1 0 -3],[ 4 4 2 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,0,0,4,-1,1,1,4,1,1,2,-1,1,3]
Phi over symmetry [-4,0,0,2,2,1,3,2,4,1,1,1,1,1,-1]
Phi of -K [-4,0,0,2,2,1,3,2,4,1,1,1,1,1,-1]
Phi of K* [-2,-2,0,0,4,-1,1,1,4,1,1,2,-1,1,3]
Phi of -K* [-4,0,0,2,2,1,3,2,4,1,1,1,1,1,-1]
Symmetry type of based matrix +
u-polynomial t^4-2t^2
Normalized Jones-Krushkal polynomial -3z^2-10z-7
Enhanced Jones-Krushkal polynomial 2w^4z^2-5w^3z^2-10w^2z-7
Inner characteristic polynomial t^5+36t^3+7t
Outer characteristic polynomial t^6+60t^4+47t^2
Flat arrow polynomial 8*K1**4 - 4*K1**2*K2 - 4*K1**2 + 1
2-strand cable arrow polynomial -128*K2**8 + 128*K2**6*K4 - 256*K2**6 - 32*K2**4*K4**2 + 256*K2**4*K4 - 640*K2**4 - 96*K2**2*K4**2 + 480*K2**2*K4 + 272*K2**2 + 16*K2*K4*K6 - 64*K4**2 + 62
Genus of based matrix 1
Fillings of based matrix [[{1, 5}, {2, 4}, {3}], [{3, 5}, {2, 4}, {1}], [{5}, {2, 4}, {1, 3}], [{5}, {2, 4}, {3}, {1}]]
If K is slice False
Contact