Min(phi) over symmetries of the knot is: [-4,-1,1,1,3,1,2,4,3,1,2,2,0,1,2] |
Flat knots (up to 7 crossings) with same phi are :['5.5'] |
Arrow polynomial of the knot is: 8*K1**4 - 4*K1**3 - 4*K1**2*K2 - 4*K1**2 + 2*K1*K2 + 2*K1 + 1 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.5', '7.3503', '7.4776', '7.5966', '7.5967', '7.6294', '7.6308', '7.6343', '7.7034', '7.7128', '7.7593', '7.7600', '7.8161', '7.8260', '7.8579', '7.8654', '7.9085', '7.10611', '7.11225', '7.15811', '7.15824', '7.16574'] |
Outer characteristic polynomial of the knot is: t^6+72t^4+26t^2 |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.5'] |
2-strand cable arrow polynomial of the knot is: 256*K1**2*K2**5 - 832*K1**2*K2**4 + 416*K1**2*K2**3 - 400*K1**2*K2**2 + 408*K1**2*K2 - 432*K1**2 + 128*K1*K2**5*K3 + 352*K1*K2**3*K3 + 328*K1*K2*K3 + 32*K1*K3*K4 + 8*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 288*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 64*K2**4*K4 + 80*K2**4 + 32*K2**3*K3*K5 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 64*K2**2*K4 - 144*K2**2 + 16*K2*K3*K5 - 128*K3**2 - 36*K4**2 - 8*K5**2 + 298 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.5'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.599', 'vk5.601', 'vk5.724', 'vk5.727', 'vk5.1067', 'vk5.1075', 'vk5.1246', 'vk5.1249', 'vk5.1596', 'vk5.1600', 'vk5.1706', 'vk5.1712', 'vk5.1827', 'vk5.1829', 'vk5.1900', 'vk5.1902'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U1U3U4U5U2 |
R3 orbit | {'O1O2O3O4O5U1U3U4U5U2'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U4U1U2U3U5 |
Gauss code of K* | O1O2O3O4O5U1U5U2U3U4 |
Gauss code of -K* | O1O2O3O4O5U2U3U4U1U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 2 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -4 1 -1 1 3],[ 4 0 4 1 2 3],[-1 -4 0 -2 0 2],[ 1 -1 2 0 1 2],[-1 -2 0 -1 0 1],[-3 -3 -2 -2 -1 0]] |
Primitive based matrix | [[ 0 3 1 1 -1 -4],[-3 0 -1 -2 -2 -3],[-1 1 0 0 -1 -2],[-1 2 0 0 -2 -4],[ 1 2 1 2 0 -1],[ 4 3 2 4 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-3,-1,-1,1,4,1,2,2,3,0,1,2,2,4,1] |
Phi over symmetry | [-4,-1,1,1,3,1,2,4,3,1,2,2,0,1,2] |
Phi of -K | [-4,-1,1,1,3,2,1,3,4,0,1,2,0,0,1] |
Phi of K* | [-3,-1,-1,1,4,0,1,2,4,0,0,1,1,3,2] |
Phi of -K* | [-4,-1,1,1,3,1,2,4,3,1,2,2,0,1,2] |
Symmetry type of based matrix | c |
u-polynomial | t^4-t^3-t |
Normalized Jones-Krushkal polynomial | -2z-3 |
Enhanced Jones-Krushkal polynomial | -4w^4z+8w^3z-6w^2z-3w |
Inner characteristic polynomial | t^5+44t^3 |
Outer characteristic polynomial | t^6+72t^4+26t^2 |
Flat arrow polynomial | 8*K1**4 - 4*K1**3 - 4*K1**2*K2 - 4*K1**2 + 2*K1*K2 + 2*K1 + 1 |
2-strand cable arrow polynomial | 256*K1**2*K2**5 - 832*K1**2*K2**4 + 416*K1**2*K2**3 - 400*K1**2*K2**2 + 408*K1**2*K2 - 432*K1**2 + 128*K1*K2**5*K3 + 352*K1*K2**3*K3 + 328*K1*K2*K3 + 32*K1*K3*K4 + 8*K1*K4*K5 - 128*K2**8 + 128*K2**6*K4 - 288*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 64*K2**4*K4 + 80*K2**4 + 32*K2**3*K3*K5 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 64*K2**2*K4 - 144*K2**2 + 16*K2*K3*K5 - 128*K3**2 - 36*K4**2 - 8*K5**2 + 298 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{1, 5}, {4}, {2, 3}], [{3, 5}, {4}, {1, 2}], [{4, 5}, {2, 3}, {1}], [{5}, {1, 4}, {2, 3}]] |
If K is slice | False |