Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 5.4

Min(phi) over symmetries of the knot is: [-4,-1,-1,3,3,1,2,3,4,0,1,2,2,3,0]
Flat knots (up to 7 crossings) with same phi are :['5.4']
Arrow polynomial of the knot is: 2*K2**2 - K4
Flat knots (up to 7 crossings) with same arrow polynomial are :['5.4', '5.12', '7.339', '7.372', '7.683', '7.686', '7.783', '7.835', '7.1400', '7.1509', '7.2242', '7.2291', '7.2585', '7.2587', '7.2589', '7.2606', '7.2607', '7.2776', '7.2941', '7.2953', '7.2956', '7.2957', '7.3001', '7.3005', '7.3308', '7.3356', '7.3463', '7.3497', '7.4355', '7.4630', '7.6229', '7.6235', '7.6242', '7.6283', '7.6342', '7.6479', '7.6854', '7.6912', '7.7078', '7.7178', '7.8229', '7.9338', '7.9346', '7.9415', '7.9424', '7.9478', '7.9487', '7.9524', '7.9549', '7.9674', '7.9728', '7.9827', '7.9931', '7.9936', '7.9941', '7.10092', '7.11563', '7.11618', '7.11635', '7.11705', '7.12038', '7.12304', '7.12350', '7.13109', '7.13121', '7.13180', '7.13218', '7.13238', '7.13252', '7.13426', '7.13553', '7.14151', '7.14201', '7.14879', '7.15006', '7.15093', '7.15121', '7.15135', '7.15143', '7.17076']
Outer characteristic polynomial of the knot is: t^6+84t^4+47t^2
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['5.4']
2-strand cable arrow polynomial of the knot is: -256*K1**2*K3**2 - 272*K1**2 + 160*K1*K2*K3 + 576*K1*K3*K4 + 48*K1*K4*K5 + 16*K1*K6*K7 - 24*K2**2 + 16*K2*K3*K5 - 256*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 256*K4**2 - 32*K5**2 - 8*K6**2 - 16*K7**2 - 2*K8**2 + 288
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['5.4']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk5.2194', 'vk5.2196', 'vk5.2209', 'vk5.2210', 'vk5.2211', 'vk5.2244', 'vk5.2248', 'vk5.2250', 'vk5.2380', 'vk5.2424']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is +.
The reverse -K is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U3U2U5U4
R3 orbit {'O1O2O3O4O5U1U3U2U5U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U2U1U4U3U5
Gauss code of K* Same
Gauss code of -K* O1O2O3O4O5U2U1U4U3U5
Diagrammatic symmetry type +
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -1 -1 3 3],[ 4 0 2 1 4 3],[ 1 -2 0 0 3 2],[ 1 -1 0 0 2 1],[-3 -4 -3 -2 0 0],[-3 -3 -2 -1 0 0]]
Primitive based matrix [[ 0 3 3 -1 -1 -4],[-3 0 0 -1 -2 -3],[-3 0 0 -2 -3 -4],[ 1 1 2 0 0 -1],[ 1 2 3 0 0 -2],[ 4 3 4 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-3,1,1,4,0,1,2,3,2,3,4,0,1,2]
Phi over symmetry [-4,-1,-1,3,3,1,2,3,4,0,1,2,2,3,0]
Phi of -K [-4,-1,-1,3,3,1,2,3,4,0,1,2,2,3,0]
Phi of K* [-3,-3,1,1,4,0,1,2,3,2,3,4,0,1,2]
Phi of -K* [-4,-1,-1,3,3,1,2,3,4,0,1,2,2,3,0]
Symmetry type of based matrix +
u-polynomial t^4-2t^3+2t
Normalized Jones-Krushkal polynomial -5z-9
Enhanced Jones-Krushkal polynomial -4w^4z+4w^3z-5w^2z-9w
Inner characteristic polynomial t^5+48t^3+7t
Outer characteristic polynomial t^6+84t^4+47t^2
Flat arrow polynomial 2*K2**2 - K4
2-strand cable arrow polynomial -256*K1**2*K3**2 - 272*K1**2 + 160*K1*K2*K3 + 576*K1*K3*K4 + 48*K1*K4*K5 + 16*K1*K6*K7 - 24*K2**2 + 16*K2*K3*K5 - 256*K3**2 + 16*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 256*K4**2 - 32*K5**2 - 8*K6**2 - 16*K7**2 - 2*K8**2 + 288
Genus of based matrix 1
Fillings of based matrix [[{4, 5}, {2, 3}, {1}]]
If K is slice False
Contact