Gauss code |
O1O2O3O4O5U1U5U3U4U2 |
R3 orbit |
{'O1O2O3O4O5U1U5U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U3U1U5 |
Gauss code of K* |
Same |
Gauss code of -K* |
O1O2O3O4O5U4U2U3U1U5 |
Diagrammatic symmetry type |
+ |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 0 2 1],[ 4 0 4 2 3 1],[-1 -4 0 -1 1 0],[ 0 -2 1 0 1 0],[-2 -3 -1 -1 0 0],[-1 -1 0 0 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -4],[-2 0 0 -1 -1 -3],[-1 0 0 0 0 -1],[-1 1 0 0 -1 -4],[ 0 1 0 1 0 -2],[ 4 3 1 4 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,4,0,1,1,3,0,0,1,1,4,2] |
Phi over symmetry |
[-4,0,1,1,2,2,1,4,3,0,1,1,0,0,1] |
Phi of -K |
[-4,0,1,1,2,2,1,4,3,0,1,1,0,0,1] |
Phi of K* |
[-2,-1,-1,0,4,0,1,1,3,0,0,1,1,4,2] |
Phi of -K* |
[-4,0,1,1,2,2,1,4,3,0,1,1,0,0,1] |
Symmetry type of based matrix |
+ |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
-7z-13 |
Enhanced Jones-Krushkal polynomial |
2w^3z-9w^2z-13w |
Inner characteristic polynomial |
t^5+33t^3+4t |
Outer characteristic polynomial |
t^6+55t^4+27t^2 |
Flat arrow polynomial |
-4*K1**2*K2 + 8*K1**2 + 2*K1*K3 - 3*K2 - 2 |
2-strand cable arrow polynomial |
-448*K1**4 - 608*K1**2*K2**2 + 944*K1**2*K2 - 520*K1**2 + 192*K1*K2**3*K3 + 784*K1*K2*K3 + 80*K1*K3*K4 - 32*K2**4*K4**2 + 96*K2**4*K4 - 304*K2**4 + 32*K2**3*K4*K6 - 192*K2**2*K3**2 - 96*K2**2*K4**2 + 232*K2**2*K4 - 8*K2**2*K6**2 - 436*K2**2 + 80*K2*K3*K5 + 32*K2*K4*K6 - 296*K3**2 - 118*K4**2 - 16*K5**2 - 4*K6**2 + 604 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 5}, {2, 4}, {3}], [{2, 5}, {1, 4}, {3}], [{2, 5}, {3, 4}, {1}], [{2, 5}, {4}, {1, 3}], [{2, 5}, {4}, {3}, {1}], [{4, 5}, {3}, {1, 2}]] |
If K is slice |
False |